PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the Detonation Parameters of Aluminized Explosives Based on a Disequilibrium Multiphase Model

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Detonation models are usually based on the classical Euler equations of gas dynamics under the assumption of thermodynamic equilibrium. However reported data show the Chapman-Jouguet (CJ) detonation parameters of nonideal explosives based on thermodynamic equilibrium codes are significantly different from experimental results. Based on the conventional CJ model, a new multiphase flow model, not in thermal equilibrium, was considered in this study. This approach was applied to compute the velocity of detonation for several aluminized explosives. The predictions are better than the CJ equilibrium model and are in excellent agreement with experimental data. All of the deviations for the velocity of detonation (VOD) are less than 4%.
Rocznik
Strony
491--500
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Bibliografia
  • [1] Trzciński W.A., Cudziło S., Paszula J., Studies of Free Field and Confined Explosions of Aluminum Enriched RDX Compositions, Propellants Explos. Pyrotech., 2007, 32(6), 502-508.
  • [2] Lee R.J., Newman K.E., Bohl D.G., Chernoff M.P., Gregor N.M., Knustsen D.T., Combined Initial Air Blast and Quasi-static Overpressure Assessment for Pressed Aluminized Explosives, Proc. 13th Int. Detonation Symp., Norfolk, Virginia, USA, 2006.
  • [3] Cooper M.A., Kaneshige M.J., Pahl R.J., Snedigar S., Renlund A.M., Methods for Evaluating Aluminized RDX Explosives, Proc. 13th Int. Detonation Symp., Norfolk, Virginia, USA, 2006.
  • [4] Trzciński W.A., Cudziło S., Szymańczyk L., Studies of Detonation Characteristics of Aluminium Enriched RDX Compositions, Propellants Explos. Pyrotech., 2007, 32(5), 392-310.
  • [5] Adapaka S.K., Vepakomma B.R., Evaluation of Plastic Bonded Explosive (PBX) Formulations Based on RDX, Aluminum, and HTPB for Underwater Applications, Propellants Explos. Pyrotech., 2010, 35(4), 359-364.
  • [6] Peuker J.M., Krier H., Glumac N., Particle Size and Gas Environment Effects on Blast and Overpressure Enhancement in Aluminized Explosives, Proc. Combust. Inst., 2013, 34(2), 2205-2212.
  • [7] Gilev S.D., Anisichkin V.F., Interaction of Aluminum with Detonation Products, Combust., Explos. Shock Waves (Engl. Transl.), 2006, 42(1), 107-115.
  • [8] Gogulya M.F., Makhov M.N., Explosive Characteristics of Aluminized HMX-based Nanocomposites, Combust., Explos. Shock Waves (Engl. Transl.), 2008, 44(2), 198-212.
  • [9] Trzciński W.A., Cudziło S., Paszula J., Study of the Effect of Additive Particle Size on Non-ideal Explosive Performance, Propellants Explos. Pyrotech., 2008, 33(3), 227-235.
  • [10] Vadhe P.P., Pawar R.B., Sinha R.K., Asthana S.N., Rao A.S., Cast Aluminized Explosives (Review), Combust., Explos. Shock Waves (Engl. Transl.), 2008, 44(4), 461-477.
  • [11] Mader C.L., Numerical Modelling of Explosives and Propellant, 2nd ed., CRC Press, 1998.
  • [12] Howard W.M., Fried L.E., Souers P.C., Modelling of Non-ideal Aluminized Explosives, Shock Compress. Condens. Matter, 1999, 389-392.
  • [13] Baudin G., Petitpas F., Saurel R., Thermal Non-equilibrium Modelling of the Detonation Waves in Highly Heterogeneous Condensed HE: a Multiphase Approach for Metalized High Explosives, Proc. 14th Int. Detonation Symp., Idaho, USA, 2010.
  • [14] Gogulya M.F., Detonation Waves in HMX/Al Mixtures, Proc. 11th Int. Detonation Symp., Snowmass, CO, USA, 1998.
  • [15] Baudin G., Lefrançois A., Bergues D., Bigot J., Champion Y., Combustion of Nanophase Aluminum in the Detonation Products of Nitromethane, Proc. 11th Int. Detonation Symp., Snowmass, CO, USA, 1998.
  • [16] Victorov S.B., The Effect of Al2O3 Phase Transitions on Detonation Properties Aluminized Explosives, Proc. 12th Int. Detonation Symp., San Diego, USA, 2002.
  • [17] Brousseau P., Detonation Properties of Explosives Containing Nanometric Aluminum Powder, Proc. 12th Int. Detonation Symp., San Diego, USA, 2002.
  • [18] Brown M., Anderson M., Needham C., Watry C., The Effects of Metal Loading on the Detonation Properties of Explosive Mixes, Proc. 14th Int. Detonation Symp., Idaho, USA, 2010.
  • [19] Zhang Q., Chang Y., Prediction of Detonation Pressure and Velocity of Explosives with Micrometer Aluminum Powders, Cent. Eur. J. Energ. Mater., 2012, 9(1), 77-86.
  • [20] Keshavarz M.H., Mofrad R.T., Poor K.E., Shokrollahi A., Yousefi M.H., Determination of Performance of Non-ideal Aluminized Explosives, J. Hazard. Matter., 2006, A137, 83-87.
  • [21] Petitpas F., Saurel R., Franquet E., Chinnaya A., Modelling Detonation Waves In Condensed Energetic Materials: Multiphase CJ Conditions and Multidimensional Computations, Shock Waves, 2009, 19, 377-401.
  • [22] Kapila A., Menikoff R., Bdzil J., Son S., Stewart D., Two-phase Modelling of DDT in Granular Materials: Reduced Equations, Phys. Fluids, 2001, 13, 302-304,
  • [23] Saurel R., Metayer O.L., Massoni J., Gravilyuk S., Shock Jump Relations for Multiphase Mixtures with Stiff Mechanical Relaxation, Shock Waves, 2007, 16, 209-232.
  • [24] Wood W.W., A Textbook of Sound, G. Bell and Sons Ltd., London, 1930.
  • [25] Dobratz B.M., Crawford P.C., LLNL Explosives Handbook, UCRL-52997 Rev. 2, USA, 1985.
  • [26] Zhang B.P., Zhang Q.M., Huang F.L., Detonation Physics (in Chinese), The Publishing House of Ordnance Industry, Beijing, 2001.
  • [27] Ripley R.C., Zhang F., Lien F.S., Detonation Interaction with Metal Particles In Explosives, Proc. 13th Int. Detonation Symp., Norfolk, Virginia, USA, 2006.
  • [28] Keshavarz M.H., Detonation Temperature of High Explosives from Structural Parameters, J. Hazard. Mater., 2006, 137(3), 1303-1308.
  • [29] Fried L.E., Howard W.M., Souers P.C., CHEETAH 2.0 User Manual, Lawrence Livermore National Laboratory, Livermore, CA, USA, 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2c0ada7-e9fa-408d-9c94-53b6387038e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.