Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The matrix converter is a new generation of power electronic converters and is an alternative to back-to-back converters in applications that dimensions and weight are important. In this paper, a simple control algorithm for a three-phase asynchronous motor based on a direct torque control technique, which is fed through a three-phase direct matrix converter, is presented. For direct matrix converters, 27 switching modes are possible, which using the predictive control technique and for the different modes of the matrix converter, the motor behavior is estimated at the next sampling interval. Then the objective function is determined and the optimal possible mode is selected. Finally, the best switching mode is applied to the direct matrix converter. In order to evaluate the proposed method, simulation of the system in Matlab/Simulink software environment is performed. The results show the effectiveness of the proposed method.
Czasopismo
Rocznik
Tom
Strony
773--788
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wz.
Twórcy
autor
- Faculty of Electrical and Computer Engineering, Urmia University Iran, Urmia city, 11km SERO Road, postal code:5756151818
autor
- Faculty of Electrical and Computer Engineering, Urmia University Iran, Urmia city, 11km SERO Road, postal code:5756151818
autor
- Faculty of Electrical and Computer Engineering, Urmia University Iran, Urmia city, 11km SERO Road, postal code:5756151818
Bibliografia
- [1] Cortes P., Kazmierkowski M. P., Kennel R. M., Quevedo D. E., and Rodriguez J., Predictive control in power electronics and drives, IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4312–4324 (2008).
- [2] Miranda H., Cortes P., Yuz J., Rodriguez J., Predictive torque control of induction machines based on state-space models, IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1916–1924 (2009).
- [3] Riveros J. A., Barrero F., Levi E., Duran M. J., Toral S., Jones M., Variable-speed five-phase induction motor drive based on predictive torque control, IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 2957–2968 (2013).
- [4] Klumpner C., Nielsen P., Boldea I., Blaabjerg F., A new matrix converter motor (MCM) for industry applications, IEEE Trans. Ind. Electron., vol. 49, no. 2, pp. 325–335 (2002).
- [5] Curkovic M., Jezernik K., Horvat R., FPGA-based predictive sliding mode controller of a three-phase inverter, IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 637–644 (2013).
- [6] Davari S. A., Khaburi D. A., Wang F., Kennel R. M., Using full order and reduced order observers for robust sensorless predictive torque control of induction motors, IEEE Trans. Power Electron., vol. 27, no. 7, pp. 3424–3433 (2012).
- [7] Karamanakos P., Stolze P., Kennel R. M., Manias S., Mouton H. D. T., Variable switching point predictive torque control of induction machines, IEEE Journal of Emerging and Selected Topics in Power Electron., vol. 2, no. 2, pp. 285–295 (2014).
- [8] Marei M. I., A unified control strategy based on phase angle estimation for matrix converter interface system, IEEE Systems Journal, vol. 6, no. 2, pp. 278–286 (2012).
- [9] Nikkhajoei H., Tabesh A., Iravani R., Dynamic model of a matrix converter for controller design and system studies, IEEE Trans. Power Del., vol. 21, no. 2, pp. 744–754 (2006).
- [10] Espina J., Ortega C., Lillo L. D., Empringham L., Balcells J., Arias A., Reduction of output common mode voltage using a novel SVM implementation in matrix converters for improved motor lifetime, IEEE Trans. Ind. Electron:, vol. 61, no. 11, pp. 5903–5911 (2014).
- [11] Lee M. Y., Wheeler P., Klumpner C., Space-vector modulated multilevel matrix converter, IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3385–3394 (2010).
- [12] Hojabri H., Mokhtari H., Liuchen C., A generalized technique of modeling, analysis, and control of a matrix converter using SVD, IEEE Trans. Ind. Electron., vol. 58, no. 3, pp. 949–959 (2011).
- [13] Wheeler P., Grant D. A., Optimized input filter design and low-loss switching techniques for a practical matrix converter, Proc. Inst. Elect.Eng. Elect. Power Appl., vol. 144, no. 1, pp. 53–60 (1997).
- [14] Helle L., Larsen K. B., Jorgensen A. H., Munk-Nielsen S., Blaabjerg F., Evaluation of modulation schemes for three-phase to three-phase matrix converters, IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 158–171 (2004).
- [15] Kolar J. W., Friedli T., Rodriguez J., Wheeler P. W., Reviewof three-phase PWM ac-ac converter topologies, IEEE Trans. Ind.Electron. – Special Section Matrix Converters, vol. 58, no. 11, pp. 4988–5006 (2011).
- [16] Huang X., Bradley K., Goodman A., Gerada C., Wheeler P., Clare J., Whitley C., Fault- tolerance analysis of multi-phase single sided matrix converter for brushless DC drives, in Proc. IEEE ISIE, pp. 3168–3173, June 4–7 (2007).
- [17] Yan Z., Jia M., Zhang C., Wu W., An integration SPWM strategy for High-Frequency link matrix converter with adaptive commutation in one step based on de-re-coupling idea, IEEE Trans. Ind. Electron., vol. 50, no. 1, pp. 116–128 (2012).
- [18] Babaei E., A cascade multilevel converter topology with reduced number of switches, IEEE Trans. Ind. Electron., vol. 23, no. 6, pp. 2657–2664 (2008).
- [19] Zhang Y., Yang H., Model predictive torque control of induction motor drives with optimal duty cycle control, IEEE Trans. Power. Electron., vol. 29, no. 12, pp. 6593–6603 (2014).
- [20] Cho Y., Bak Y., Lee K. B., Torque-Ripple Reduction and Fast Torque Response Strategy for Predictive Torque Control of Induction Motors, IEEE Transactions on Power Electronics, vol. 33, no. 3, pp. 2458–2470 (2017).
- [21] Peng T., Wen M., Li Z., Xu Z., Yang, J., An improved DTC strategy for induction motors fed by direct matrix converter, IEEE, Chinese Automation Congress (CAC), pp. 1766–1771 (2015). IEEE Transactions on Magnetics, vol. 54, iss. 6 (2018).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2be0705-97a9-4f75-8ab5-1e4d431da8d7