PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electroslag refining with liquid metal for composite rotor manufacturing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: To develop novel ESR based process for composite ingot with shallow transition zone between layers in order to produce efficient heavy-weight rotors for steam turbines. Design/methodology/approach: The nowadays heavy-weight rotors for steam turbines for power plants are monoblock or two or more layer in length composite part facilitating operation in different zones withstanding various loads and working medium. However, the joining of various steel in composite rotors by welding has low productivity. The ESR now is recognised as the best available technology for the big-diameter and mass forgings for power generating machines, including rotor ones. The ESR affords the most favourable conditions of solidification resulting in homogenous low-segregation ingot with smooth surface and high-quality structure. The step ahead is the ESR for composite. Findings: The two-layer model ingot had produced from steel grades 12Cr13 and 35NiCrMoV12-5 were manufactured using the electroslag process with the liquid metal (ESR LM) in the CSM of 180 mm in diameter with ingot withdrawing. The transition zone in two-layer ingot had have the shallow shape and low depth with the even macrostructure without defects of the same type as both joined steels. The metal of the transition zone fully satisfies standard requirements for properties of both steel grades in the heat treated and as-cast conditions. Research limitations/implications: The ESR LM can provide both the monobloc heavy ingots with uniform structure and composites with low-stress connection between metal layers for heavyweight rotors and other critical products manufacturing.
Rocznik
Strony
49--55
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
  • E. O. Paton Electric Welding Institute, Kyiv, Ukraine
  • PC Elmet-Roll, Kyiv, Ukraine
autor
  • E. O. Paton Electric Welding Institute, Kyiv, Ukraine
  • E. O. Paton Electric Welding Institute, Kyiv, Ukraine
  • PC Elmet-Roll, Kyiv, Ukraine
autor
  • E. O. Paton Electric Welding Institute, Kyiv, Ukraine
autor
  • E. O. Paton Electric Welding Institute, Kyiv, Ukraine
autor
  • National Metallurgical Academy of Ukraine, Dnipro, Ukraine
Bibliografia
  • [1] K. Nicol, Status of advanced ultra-supercritical pulverised coal technology, CCC/229, IEA Clean Coal Centre, Report, 2013, Available from: https://www.usea.org/sites/default/files/122013_Status %20of%20advanced%20ultra-supercritical%20 pulverised%20coal%20technology_ccc229.pdf
  • [2] Cool Earth-Innovative Energy Technology Program, The Institute of Applied Energy, June 2008 Published Version, Ministry of Economy, Trade and Industry Available from: https://www.iae.or.jp/wp/wp- content/uploads/2014/09/Cool_Earth08_e/CoolEarth_ RM.pdf.
  • [3] Materials for advanced ultra supercritical steam turbines, Technical Report, 2015-12-01, Available from: https://www.osti.gov/servlets/purl/1243058.
  • [4] Z. Liu, H. Bao, G. Yang, S. Xu, Q. Wang, Y. Yang Material advancement used for 700°C A-USC-PP, Proceedings of the 7th International Conference, ASM International, Materials Park, OH, 2013, 171-179.
  • [5] A. Mathur, O.P. Bhutani, T. Jayakumar, D.K. Dubey, S.C. Chetal, India's national A-USC mission—Plan and progress, Advances in Materials Technology for Fossil Power Plants, Proceedings of the 7th International Conference, ASM International, Materials Park, OH, 2013, 53-59.
  • [6] J. Shingledecker, R. Purgert, P. Rawls, Current status of the U.S. DOE/OCDO A-USC materials technology research and development program, Proceedings of the 7th International Conference “Advances in Materials Technology for Fossil Power Plants”, 2013, Waikoloa, Hawaii, USA.
  • [7] E. Saito, N. Matsuno, K. Tanaka, S. Nishimoto, R. Yamamoto, S. Imano, Latest Technologies and Future Prospects for a New Steam Turbine, Mitsubishi Heavy Industries Technical Review 52/2 (2015) 39-46.
  • [8] A. Mitchel, The prospects for large forgings of segregation-sensitive alloys, Advances in Electro¬metallurgy 2 (2005) 2-6.
  • [9] L.B. Medovar, A.P Stovpchenko, A.N. Golovachev, B.B. Fedorovsky, ESR and modem approaches to control of solidification of large forge ingot, Sovremennaya Elektrometallurgiya 3 (2013) 12-19 (in Russian).
  • [10] T.-U. Kern, B. Scarlin, B. Donth et al., European COST536 project for the development of new high- temperature rotor materials, Proceedings of International Forgemasters Meeting, IFM-2008, Sant¬Ander, Spain, 2008, 316-320.
  • [11] A. Diwo, B. Donth, N. Blaes et al., Largest steam turbine rotor ever manufactured from a nickel base alloy, Proceedings of the 18th International Forgemasters Meeting, IFM-2011, Pittsburg, USA, 2011,224-228.
  • [12] I. Son, W. Lee, Kw. Sim et al., Installation of 150-ton new ESR facility and production of 120-ton ESR ingot for 12Cr HIP rotor forgings, Proceedings of the Conference, Tokyo, Japan, 2014 333-337.
  • [13] P. Bettoni, U. Biebricher, H. Franz et al., Large ESR forging ingots and their quality in production, La Metallurgia Italiana 10 (2014) 13-21.
  • [14] B.E. Paton, L.B. Medovar, V.Ya Saenko et al., About some 'old-new' problems of ESR, Sovremennaya Elektrometallurgiya, 3 (2004) 7-10 (in Russian).
  • [15] Y. Liu, Z. Zhang, G. Li, Q. Wang, L. Wang, B. Li, Effect of Current on Structure and Macrosegregation in Dual Alloy Ingot Processed by Electroslag Remelting, Metals 7/6 (2017) 185, doi: 10.3390/met7060185.
  • [16] K. Kajikawa, S. Ganesh, K. Kimura, H. Kudo, T. Nakamura, Y. Tanaka, R. Schwant, F. Gatazka, L. Yang, Forging for advanced trubine applications: Development of multiple alloy rotor forging for turbine application, Ironmaking & Steelmaking 34/3 (2013) 216-220, doi: 10.1179/174328107X174690.
  • [17] L.B. Medovar, V.L. Petrenko, A.K. Tsykoulenko et al., ESR with two power sources and process control, Proceedings of International Symposium on Liquid Metal Processing and Casting, LMPC-2005, Santa Fe, New Mexico, SA, 2005, 131-135.
  • [18] L. Medovar, G. Stovpchenko, G. Polishko, ESR process as additive manufacturingtechnique for heavy ingots and metamaterials: experience and prospects, Proceedings of the 20th International Forgmasters Meetin,g IFM-2017, Graz, Austria, 2017, 345-352.
  • [19] V. Zaitsev, L. Medovar, G. Stovpchenko, G. Polishko, Ye. Volchenkov, Reliable steel-copper anodes for direct current electric arc furnaces manufactured by electroslag remelting under two circuits diagram, Proceedings of Medovar Memorial Symposium, Kyiv, Ukraine, 2016,211-215.
  • [20] M. Kubin, A. Scheriau, M.Knabl, H. Holzgruber, Production of heavy forging ingots up to 250 tons via the ESR process — operational experiences and process optimization method, Proceedings of Medovar Memorial Symposium, Kyiv, Ukraine, 2016, 16-20.
  • [21] elmet-roll.com.ua [Internet]. Kiev (UA): ELMET- ROLL; [cited 2013]. Available from: http:// www.elmet-roll.com.ua/index.php/en/automation-and- process-control-systems/sensors-of-liquid-metal-level.
  • [22] elmet-roll.com.ua [Internet]. Kiev (UA): ELMET- ROLL; [cited 2013]. Available from: http:// www.elmet-roll.com.ua/index.php/en/innovation/ electroslag- process-with-liquid-metal.
  • [23] G.V. Samsonov, I.M. Vinitsky, Refractory compounds, Metallurgy, Moscow, 1976, 560.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2bd9f51-1526-43a8-b9c7-084f4c4a445b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.