Identyfikatory
DOI
Warianty tytułu
Zastąpienie klasyfikacji jakości skał (RQD) i odległości pomiędzy nieciągłościami skał zmodyfikowanym współczynnikiem opisującym strukturę blokową warstw skalnych w systemie oceny stanu górotworu
Języki publikacji
Abstrakty
The evaluation accuracies of rock mass structures based on the ratings of the Rock Quality Designation (RQD) and discontinuity spacing (S) in the Rock Mass Rating (RMR) system are very limited due to the inherent restrictions of RQD and S. This study presents an improvement that replaces these two parameters with the modified blockiness index (Bz) in the RMR system. Before proceeding with this replacement, it is necessary for theoretical model building to make an assumption that the discontinuity network contains three sets of mutually orthogonal disc-shaped discontinuities with the same diameter and spacing of discontinuities. Then, a total of 35 types of theoretical DFN (Discrete Fracture Network) models possessing the different structures were built based on the International Society for Rock Mechanics (ISRM) discontinuity classification (ISRM, 1978). In addition, the RQD values of each model were measured by setting the scanlines in the models, and the Bz values were computed following the modified blockiness evaluation method. Correlations between the three indices (i.e., Bz, RQD and S) were explored, and the reliability of the substitution was subsequently verified. Finally, RMR systems based on the proposed method and the standard approach were applied to real cases, and comparisons between the two methods were performed. This study reveals that RQD is well correlated with S but is difficult to relate to the discontinuity diameter (D), and Bz has a good correlation with RQD/S. Additionally, the ratings of RQD and S are always far from the actual rock mass structure, and the Bz ratings are found to give better characterizations of rock mass structures. This substitution in the RMR system was found to be acceptable and practical.
Dokładność oceny struktury górotworu w oparciu o określenie jakości skał oraz odległości pomiędzy kolejnymi nieciągłościami (S) w systemie oceny stanu górotworu (RMR-Rock Mass Rating) jest mocno ograniczona z powodu ograniczeń wbudowanych w samą strukturę modelu RQD i w procedury obliczania odległości pomiędzy nieciągłościami. W niniejszej pracy zaproponowano ulepszone rozwiązanie zakładające zastąpienie powyższych dwóch parametrów przez jeden wskaźnik oceny struktury blokowej (Bz) w systemie RMR. Jednakże przed zastąpieniem wskaźników konieczne okazało się opracowanie modelu teoretycznego opartego na założeniu że sieć nieciągłości zawiera trzy zbiory wzajemnie ortogonalnych nieciągłości w kształcie dysków, mających tę samą średnicę i zlokalizowanych w równych odstępach. Następnie opracowano w sumie 35 typów teoretycznych dyskretnych modeli nieciągłości DFN (Discrete Fracture Network) o różnych strukturach w oparciu o klasyfikację nieciągłości określoną przez International Society for Rock Mechanics (ISRM, 1978). Ponadto, wartości RQD dla każdego z modeli zostały zmierzone poprzez odpowiednie ustawienie linii wybierania w modelu, zaś wartości Bz obliczono w oparciu o zmodyfikowaną metodę oceny struktury blokowej. Badano wzajemne korelacje pomiędzy trzema wskaźnikami (Bz, RQD, S), badano także wiarygodność modeli po podstawieniu. W etapie końcowym, system RMR oparty na zaproponowanej metodzie i podejściu standardowym został zastosowany do analizy rzeczywistych przypadków w celu porównania wyników uzyskanych w oparciu o powyższe dwie metody. Wyniki wskazały wysoki stopień korelacji wielkości RQD i S, choć trudno znaleźć korelacje pomiędzy RQD a średnicą nieciągłości (D). Stwierdzono także wysoki stopień korelacji pomiędzy wartościami RQD i S. Ponadto, stwierdzono że wielkości RQD i S nie opisują dokładnie rzeczywistej struktury górotworu, zaś ocena oparta na wskaźniku Bz wydaje się lepiej charakteryzować jego strukturę. Podstawienie tego parametru do systemu klasyfikacji RMR wydaje się więc akceptowalne i uzasadnione praktycznie.
Wydawca
Czasopismo
Rocznik
Tom
Strony
353--382
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr.
Twórcy
autor
- College of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, PR China
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, PR China
autor
- College of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, PR China
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, PR China
autor
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, PR China
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, PR China
Bibliografia
- [1] Aksoy C.O., 2008. Review of rock mass rating classification: Historical developments, applications, and restrictions. J. Min. Sci. 44, 1, 51-63. doi:10.1007/s10913-008-0005-2.
- [2] Atr J.S., Laubscher H., 2001. A geomechanics classification system for the rating of rock mass in mine design. J. South African Inst. Min. Metall. 90, 10, 257-273. doi:10.1016/0148-9062(91)90830-F.
- [3] Bieniawski Z.T., 1973. Engineering classification of jointed rock masses. Trans. S. Afr. I. Civil Eng. 15.
- [4] Bieniawski Z.T., 1989. Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering.
- [5] Chen D.J., Liu H.T., 1979. A new index of rock mass quality evaluation: blockiness modulus. In: Chinese first selection of engineering geological academic conference papers. Soochow, 1979 (in Chinese).
- [6] Chen J., Li X., Zhu H., 2017. Geostatistical method for predicting RMR ahead of tunnel face excavation using dynamically exposed geological information. Eng. Geol. 2017. doi:10.1016/j.enggeo.2017.08.004.
- [7] Du S.G., 1999. Engineering properties of rock mass discontinuities. Seismological Press, Beijing (in Chinese).
- [8] Eissa E.A., 1991. Volumetric Rock Quality Designation. J. Geotech. Eng. 117, 9, 1331-1346.
- [9] Elmouttie M.K., Poropat G.V., 2012. A method to estimate in situ block size distribution. Rock Mech. Rock Eng. 45, 3, 401-407. doi:10.1007/s00603-011-0175-0.
- [10] Ferrari F., Apuani T., Giani G.P., 2014. Rock Mass Rating spatial estimation by geostatistical analysis. Int. J. Rock Mech. Min. Sci. 70, 162-176. doi:10.1016/j.ijrmms.2014.04.016.
- [11] González Nicieza C., Álvarez Fernández M.I., Menéndez Díaz A., Álvarez Vigil A.E., 2006. Modification of rock failure criteria considering the RMR caused by joints. Comput. Geotech. 33, 8, 419-431. doi:10.1016/j.compgeo.2006.08.004.
- [12] Hoek E., Diederichs M.S., 2013. Quanti fication of the Geological Strength Index Chart. 47th US Rock Mech. / Geomech. Symp. held San. Fr. CA, USA, June 23-26.
- [13] Hoseinie S.H., Aghababaei H., Pourrahimian Y., 2008. Develo pment of a new classification system for assessing of rock mass drillability index (RDi). Int. J. Rock Mech. Min. Sci. 45, 1, 1-10. doi:10.1016/j.ijrmms.2007.04.001.
- [14] ISRM, 1978. Suggested methods for the quantitative description of discontinuities in rock masses. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 15, 319-368. doi:10.1016/0148-9062(79)91476-1.
- [15] Jain P., Naithani A.K., Singh T.N., 2016. Estimation of the performance of the tunnel boring machine (TBM) using uniaxial compressive strength and rock mass rating classification (RMR) – A case study from the Deccan traps, India. J. Geol. Soc. India 87, 2, 145-152. doi:10.1007/s12594-016-0382-0.
- [16] Jalalifar H., Mojedifar S., Sahebi A.A., 2014. Prediction of rock mass rating using fuzzy logic and multi-variable RMR regression model. Int. J. Min. Sci. Technol. 24, 2, 237-244. doi:10.1016/j.ijmst.2014.01.015.
- [17] Jalalifar H., Mojedifar S., Sahebi A.A., Nezamabadi-pour H., 2011. Application of the adaptive neuro-fuzzy inference system for prediction of a rock engineering classification system. Comput. Geotech. 38, 6, 783-790. doi:10.1016/j.compgeo.2011.04.005.
- [18] Justo J.L., Justo E., Azanon J.M., Durand P., Morales A., 2010. The use of rock mass classification systems to estimate the modulus and strength of jointed rock. Rock Mech. Rock Eng. 43, 3, 287-304. doi:10.1007/s00603-009-0040-6.
- [19] Khademi J., Shahriar K., Rezai B., Rostami J., 2010. Performance prediction of hard rock TBM using Rock Mass Rating (RMR) system. Tunn. Undergr. Sp. Technol. Inc. Trenchless. Technol. Res. 25 4, 333-345. doi:10.1016/j.tust.2010.01.008.
- [20] Kuszmaul J.S., 1999. Estimating keyblock sizes in underground excavations: accounting for joint set spacing. Int. J. Rock. Mech. Min. Sci. 36, 2, 217-232. doi:10.1016/S0148-9062(98)00184-3.
- [21] Li P.F., Yang J.H., Nie D.X., 2009. Study on Modification of Volumetric Joint Count. J. Yangtze River. Sci. Res. Inst. 26, 12, 80-83 (in Chinese with English abstract).
- [22] Li S.C., Liu H., Li L.P., et al., 2017. A quantitative method for rock structure at working faces of tunnels based on digital images and its application. Chin. J. Rock Mech. Eng. 36, 1, 1-9 (in Chinese with English abstract).
- [23] Li X.C., Rui X.P., Qu X.K., et al., 2016. Algorithm of karst fracture seepage path construction based on disc generalized model. J. Geo. Inform. Sci. 18, 2, 182-189. doi:10.3724/SP.J.1047.2016.00182 (in Chinese with English abstract).
- [24] Liu J., Elsworth D., Brady B.H., 1999. Linking stress-dependent effective porosity and hydraulic conductivity fields to RMR. Int. J. Rock Mech. Min. Sci. 36, 5, 581-596. doi:10.1016/S0148-9062(99)00029-7.
- [25] Liu Q., Liu J., Pan Y., et al., 2017. A case study of TBM performance prediction using a Chinese rock mass classification system – Hydropower Classification (HC) method. Tunn. Under. Sp. Tech. 65, 140-154.
- [26] Liu X.F., 2010. Study on blockiness of fractured rock mass. Dissertation, China University of Geosciences (Beijing) (in Chinese with English abstract).
- [27] Liu Z. xiang, Dang W. gang, 2014. Rock quality classification and stability evaluation of undersea deposit based on M-IRMR. Tunn. Undergr. Sp. Technol. 40, 95-101. doi:10.1016/j.tust.2013.09.013.
- [28] Lowson A.R., Bieniawski Z.T., 2013. Critical Assessment of RMR based Tunnel Design Practices: a Practical Engineer’s Approach. Rapid Excav. Tunneling Conf. (June), 16.
- [29] Mutlu B., Sezer E.A., Nefeslioglu H.A., 2017. A defuzzification-free hierarchical fuzzy system (DF-HFS): Rock mass rating prediction. Fuzzy Sets. Syst. 307, 50-66. doi:10.1016/j.fss.2016.01.001.
- [30] Nikafshan Rad H., Jalali Z., Jalalifar H., 2015. Prediction of rock mass rating system based on continuous functions using Chaos-ANFIS model. Int. J. Rock Mech. Min. Sci. 73, 1-9. doi:10.1016/j.ijrmms.2014.10.004.
- [31] Niu W.J., 2017. Study on the modification of blockiness evaluation method and the geometric and mechanical effect of fractured rock mass. Dissertation, Guangxi University (in Chinese with English abstract).
- [32] Palmstrom A., 2005. Measurements of and correlations between block size and rock quality designation (RQD). Tunn. Undergr. Sp. Technol. 20, 4, 362-377. doi:10.1016/j.tust.2005.01.005.
- [33] Palmström A., 2009. Combining the RMR, Q, and RMi classification systems. Tunn. Undergr. Sp. Technol. 24, 4, 491-492. doi:10.1016/j.tust.2008.12.002.
- [34] Paul A., Singh A.P., Loui P.J., Singh A.K., Khandelwal M., 2012. Validation of RMR-based support design using roof bolts by numerical modeling for underground coal mine of Monnet Ispat, Raigarh, India – a case study. Arab. J. Geosci. 5, 6, 1435-1448. doi:10.1007/s12517-011-0313-8.
- [35] Pells P., Bieniawski Z.T.R., Hencher S., Pells S., 2016. RQD: Time to Rest in Peace. Can. Geotech. J. (1974):cgj - 2016-0012. doi:10.1139/cgj-2016-0012.
- [36] Pinheiro M., Emery X., Miranda T., Vallejos J., 2016. Truncated Gaussian Simulation to Map the Spatial Heterogeneity of Rock Mass Rating. Rock Mech. Rock Eng. 49, 8, 3371-3376. doi:10.1007/s00603-016-0928-x.
- [37] Pinheiro M., Vallejos J., Miranda T., Emery X., 2016. Geostatistical simulation to map the spatial heterogeneity of geomechanical parameters: A case study with rock mass rating. Eng. Geol. 205, 93-103. doi:10.1016/j.enggeo.2016.03.003.
- [38] Potvin Y., Dight P.M., Wesseloo J., 2012. Some pi tfalls and misuses of rock mass classification systems for mine design. J. S. Afr. I. Min. Metall. 112, 8, 697-702.
- [39] Priest S.D., 1993. Discontinuity analysis for rock engineering. Chapman & Hall, London.
- [40] Romana M., 1993. A Geomechanical Classification for Slopes: Slope Mass Rating. Compr. Rock Eng. 575-599. doi:http://dx.doi.org/10.1016/B978-0-08-042066-0.50029-X.
- [41] Ruf J.C., Rust K.A., Engelder T., 1998. Investi gating the effect of mechanical discontinuities on joint spacing. Tectonophysics 295, 1-2, 245-257. doi:10.1016/S0040-1951(98)00123-1.
- [42] Ruiz-Carulla R., Corominas J., Mavrouli O., 2015. A methodology to obtain the block size distribution of fragmental rockfall deposits. Landslides 12, 4, 815-825. doi:10.1007/s10346-015-0600-7.
- [43] Şen Z., Bahaaeldin B.H., 2003. Modified rock mass classification system by continuous rating. Eng. Geol. 67, 3-4, 269-280. doi:10.1016/S0013-7952(02)00185-0.
- [44] Sereshki F., Daftaribesheli A., Ataei M., 2010. A mamdani fuzzy inference system for rock mass rating (RMR) and its use in rock mass parameters estimation. Arch. Min. Sci. 55, 4, 947-960.
- [45] Shi G.H., 2006. Producing joint polygons, cutting joint blocks and finding key blocks for general free surfaces. Chin. J. Rock Mech. Eng. 25, 11, 2161-2170.
- [46] Stavropoulou M., 2014. Discontinuity frequency and block volume distribution in rock masses. Int. J. Rock Mech. Min. Sci. 65, 62-74. doi:10.1016/j.ijrmms.2013.11.003.
- [47] Wang C.Y., Hu P.L., Sun W.C., 2010. Method for evaluating rock mass integrity based on borehole camera technology. Rock Soil. Mech. 31, 4, 1326-1330 (in Chinese with English abstract).
- [48] Wang L.H., Li J.R., Li J.L., et al., 2013. Correction of RMR system and its engineering application. Chin. J. Rock Mech. Eng. 32, 3309-3316 (in Chinese with English abstract).
- [49] Wang S.C., He F.L., Li C.S., 2007. Tunneling Rock Mass Classification. China Southwest Jiaotong University Press, Chengdu (in Chinese).
- [50] Wang X.M., 2013. Study on rock fractures and rock blocks in Wudongde dam area. Disssertation, China University of Geoscience (Beijing) (in Chinese with English abstract).
- [51] Warren S.N., Kallu R.R., Barnard C.K., 2016. Correlation of the Rock Mass Rating (RMR) System with the Unified Soil Classification System (USCS): Introduction of the Weak Rock Mass Rating System (W-RMR). Rock Mech. Rock Eng. 49, 11, 4507-4518. doi:10.1007/s00603-016-1090-1.
- [52] Xia L., Li M., Chen Y., Zheng Y., Yu Q., 2015. Blockiness level of rock mass around underground powerhouse of Three Gorges Project. Tunn. Undergr. Sp. Technol. 48, 67-76.
- [53] Xia L., Zheng Y., Yu Q., 2016. Estimation of the REV size for blockiness of fractured rock masses. Comput. Geotech. 76, 83-92. doi:10.1016/j.compgeo.2016.02.016.
- [54] Yang Z.Y., Chen J.M., Huang T.H., 1998. Effect of joint sets on the strength and deformation of rock mass models. Int. J. Rock Mech. Min. Sci. 35, 1, 75-84. doi:10.1016/S1365-1609(98)80024-5.
- [55] Yu Q., Ohnishi Y., Xue G., Chen D., 2009. A generalized procedure to identify three-dimensional rock blocks around complex excavations. Int. J. Numer Anal. Methods Geomech. 33, 3, 355-375. doi:10.1002/nag.720.
- [56] Zhang Q.H., Bian Z.H., Yu M.W., 2009. Preliminary research on rock mass integrity using spatial block identification technique. Chin. J. Rock Mech. Eng. 28, 507-515 (in Chinese with English abstract).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2b4b6a3-7864-4d6a-a414-68ec38e973a8