PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparing automatic baseflow separation filters on three watersheds in the urbanised area of East Java, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Baseflow is the primary source of water for irrigation and other water needs during prolonged dry periods; accurate and rapid estimation of baseflow is therefore crucial for water resource allocation. This research aims to estimate baseflow contribution during dry periods in three small watersheds in East Java: Surabaya-Perning (114 km2), Lamong-Simoanggrok (235 km2), and Bangsal-Kedunguneng (26 km2). Six recursive digital filters (RDFs) algorithms are explored using a procedure consisting of calibration, validation, evaluation and interpretation. In this study, the period of July to September is considered as the peak of the dry season. Moreover, data for the period 1996 to 2005 is used to calibrate the algorithms. By yearly averaging, values are obtained for the parameters and then used to test performance during the validation period from 2006 to 2015. Statistical analysis, flow duration curves and hydrographs are used to evaluate and compare the performance of each algorithm. The results show that all the filters explored can be applied to estimate baseflow in the region. However, the Lyne–Hollick (with RMSE = 0.022, 0.125, 0.010 and R2 = 0.951, 0.968, 0.712) and exponentially weighted moving average or EWMA (with RMSE = 0.022, 0.124, 0.009 and R2 = 0.957, 0.968, 0.891) for the three sub-watersheds versions give the best performance.
Wydawca
Rocznik
Tom
Strony
130--140
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • University of Jember, Faculty of Agricultural Technology, Jl kalimantan No. 37 Kampus Tegalboto, 68121, Jember, Jawa Timur, Indonesia
  • University of Jember, Faculty of Agricultural Technology, Jl kalimantan No. 37 Kampus Tegalboto, 68121, Jember, Jawa Timur, Indonesia
  • University of Jember, Faculty of Agricultural Technology, Jl kalimantan No. 37 Kampus Tegalboto, 68121, Jember, Jawa Timur, Indonesia
Bibliografia
  • BOUGHTON W.C. 1993. A hydrograph-based model for estimating water yield of ungauged catchments. Institute of Engineers Australia National Conference. Vol. 93. Iss. 14 p. 317–324.
  • BRODIE R.S., HOSTETLER S. 2005. A review of techniques for analysing baseflow from stream hydrographs. Components. Vol. 28 p. 1–13.
  • CHAPMAN T.G. 1991. Comment on the evaluation of automated techniques for base flow and recession analyses by R.J. Nathan and T.A. McMahon. Water Resources Research. Vol. 27. Iss. 7 p. 1783–1784.
  • CHAPMAN T.G., MAXWELL A.I. 1996. Baseflow separation – comparison of numerical methods with tracer experiments. Institute of Engineers Australia National Conference. Vol. 96. Iss. 5 p. 593–545.
  • ECKHARDT K. 2005. How to construct recursive digital filters for baseflow separation. Hydrological Processes. Vol. 19. Iss. 2 p. 507–515. DOI 10.1002/hyp.5675.
  • FUREY P.R., GUPTA V.K. 2003. Tests of two physically based filters for base flow separation, Water Resources Research. Vol. 39(10), 1297. DOI 10.1029/2002WR001621.
  • GONZALES A.L., NONNER J., HEIJKERS J., UHLENBROOK S. 2009. Comparison of different base flow separation methods in a lowland catchment. Hydrology and Earth System Sciences. Vol. 13. Iss. 11 p. 2055–2068. DOI 10.5194/hess-13-2055-2009.
  • GREGOR M., MALÍK P. 2012. RC 4.0 user’s manual [online]. Hydro Office Software Water Science. [Access 15.04.2018]. Available at: https://hydrooffice.org/Files/UM%20RC.pdf
  • INDARTO I. 2013. Studi Tentang Karakteristik Fisik dan Hidrologi pada 15 DAS di Jawa Timur [Study on the physical characteristics and hydrology of 15 watershed in East Java]. Forum Geografi. Vol. 27. Iss. 2 p. 163–182. DOI 10.23917/forgeo.v27i2.2374.
  • JAKEMAN A.J., HORNBERGER G.M. 1993. How much complexity is warranted in a rainfall-runoff model?. Water Resources Research. Vol. 29. Iss. 8 p. 2637–2649. DOI 10.1029/93WR00877.
  • KISSEL M., SCHMALZ B. 2020. Comparison of baseflow separation methods in the German Low Mountain range. Water. Vol. 12. Iss. 6, 1740. DOI 10.3390/w12061740.
  • LYNE V., HOLLICK M. 1979. Stochastic time-variable rainfall-runoff modelling. Institute of Engineers Australia National Conference. Vol. 79(10) p. 89–93.
  • MARSH N. 2003. River analysis package – Users guide [online]. CRC for Catchment Hydrology-Australia. [Access 16.04.2018]. Available at: https://toolkit.ewater.org.au/Tools/RAP/documentation
  • MURPHY R., GRASZKIEWICZ Z., HILL P., NEAL B., NATHAN R., LADSON T. 2009. Australian rainfall and runoff revision. Revision Projects. Project 7: Baseflow for catchment simulation. Stage 1 report. Vol. 1. Selection of approach. Engineers Australia Water Engineering. ISBN 978-085825-9218 pp. 111.
  • NATHAN R.J., MCMAHON T.A. 1990. Evaluation of automated techniques for base flow and recession analyses. Water Resources Research. Vol. 26. Iss. 7 p. 1465–1473. DOI 10.1029/WR026i007p01465.
  • PARTINGTON D., BRUNNER P., SIMMON C.T., WERNER A.D., THERRIER R., MAIER H.R., DANDY G.C. 2012. Evaluation of outputs from automated baseflow separation methods against simulated base-flow from a physically based, surface water-groundwater flow model. Journal of Hydrology. Vol. 458–459 p. 28–39. DOI 10.1016/j.jhydrol.2012.06.029.
  • SHAO G., ZHANG D., GUAN Y., ANWAR S.M., HUANG F. 2020. Application of different separation methods to investigate the baseflow characteristics of a semi-arid sandy area, Northwestern China. Water. Vol. 12. Iss. 2, 434. DOI 10.3390/w12020434.
  • SMAKHTIN V.U. 2001a. Estimating continuous monthly baseflow time series and their possible applications in the context of the ecological reserve. Water SA. Vol. 27 Iss. 2 p. 213–217. DOI 10.4314/wsa.v27i2.4995.
  • SMAKHTIN V.U. 2001b. Low flow hydrology: A review. Journal of Hydrology. Vol. 240 p. 147–186. DOI 10.1016/S0022-1694(00) 00340-1.
  • TALLAKSEN L. 1995. A review of baseflow recession analysis. Journal of Hydrology. Vol. 165. Iss. 1–4 p. 349–370. DOI 10.1016/0022- 1694(94)02540-R.
  • TAN S.B., LO E.Y., SHUY E.B., CHUA L.H., LIM W.H. 2009. Hydrograph separation and development of empirical relationships using single-parameter digital filters. Journal of Hydrologic Engineering. Vol. 14. Iss. 3 p. 271–279. DOI 10.1061/(ASCE)1084-0699 (2009)14:3(271).
  • TULARAM G.A., ILAHEE M. 2008. Exponential smoothing method of base flow separation and its impact on continuous loss estimates. American Journal of Environmental Sciences. Vol. 4. Iss. 2 p. 136–138. DOI 10.3844/ajessp.2008.136.144.
  • XIE J., LIU X., WANG K., YANG T., LIANG K., LIU C. 2020. Evaluation of typical methods for baseflow separation in The Contiguous United States. Journal of Hydrology. Vol. 583, 124628. DOI 10.1016/j.jhydrol.2020.124628.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2b2c8af-f46a-417e-bccf-9f338d7806f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.