PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temperature moderation in a multistorey building by melting of a phase-change material

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current numerical study focuses on the feasibility of furnishing thermal comfort in a structure, by using paraffin wax stored on a plate below the ceiling in a multi-storey building. The method is aimed to reduce energy demands at the increasing thermal loads. In summer, in daytime, walls of the building are exposed to the ambient thermal load, and heat transferred inside is absorbed by the melting wax. The study is numerical. It relates to temperature variations outside and inside, coupled with heat conduction and accumulation in walls, with radiation between the surfaces, with natural convection of air inside and melting of the wax at the ceiling. Fins spacing on the storage plate, visualization of the melting process, and its parametric investigation provide an insight into the physical phenomena. Temperature and flow fields were investigated for 3 mm and 12 mm thick layers of wax. At the specified conditions of the present study a 3 mm layer provides thermal comfort for most of the day, while a 6 mm layer may suffice for the entire day. Fluent 6.3 software was used in the computations.
Rocznik
Strony
85--101
Opis fizyczny
Bibliogr. 18 poz., il.
Twórcy
autor
  • Heat Transfer Laboratory, Department of Mechanical Engineering Ben-Gurion University of the Negev, Beersheva 84 105, Israel
autor
  • Heat Transfer Laboratory, Department of Mechanical Engineering Ben-Gurion University of the Negev, Beersheva 84 105, Israel
autor
  • Heat Transfer Laboratory, Department of Mechanical Engineering Ben-Gurion University of the Negev, Beersheva 84 105, Israel
Bibliografia
  • 1. Mozhevelov S., Ziskind G., Letan R.: Temperature moderation in a real-size room by PCM-based units. J. Sol. Energ. Eng. 128(2006), 178–188.
  • 2. Laouadi A., Lacroix M.: Thermal performance of a latent heat energy storage ventilated panel of electric load management. Int. J. Heat Mass Tran. 42(1999), 275–286.
  • 3. Farid M. M., Chen X.D.: Domestic electrical space heating with heat storage. Proc. Instn. Mech. Engr., J. Power Energy Part A., 213(1999) 83–92.
  • 4. Khudhair A.M., Farid M. M.: A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energ. Convers. Manage. 45(2004), 263–275.
  • 5. Breesch H., Bossaer A., Janssens A.: Passive cooling in a low-energy office building. Sol. Energ. 79(2005), 682–696.
  • 6. Zhang Y., Lin K., Zhang Q., Di H.: Ideal physical properties for free-cooling (or heating) buildings with constant thermal physical property material. Energ. Buildings 38(2006), 1164–1170.
  • 7. Henning H-M.: Solar assisted air conditioning of buildings – an overview. Appl. Therm. Eng. 27(2007), 1734–1749.
  • 8. Tyagi V. V., Buddhi D.: PCM thermal storage in buildings: A state of art. Renew. Sust. Energ. Rev. 11(2007), 1146–1166.
  • 9. Chowdhury A.A., Rasul M.G., Khan M.M.K.: Thermal comfort analysis and simulation for various low-energy cooling-technologies applied to an office building in a subtropical climate. Appl. Energ. 85(2008), 449–462.
  • 10. Pasupathy A., Velraj R., Seeniraj R.V.: Phase change materials-based architecture for thermal management in residential and commercial establishments. Renew. Sust. Energ. Rev. 12(2008), 39–64.
  • 11. Mateus T., Oliveira A.C.: Energy and economic analysis of an integrated solar absorption cooling and heating system in different building types and climates. Appl. Energ. 86(2009), 949–957.
  • 12. Baetens R., Jelle B.P., Gustavsen A.: Phase change materials for building applications: A state-of-the art review. Energ. Buildings 42(2010), 1361–1368.
  • 13. Raj V.A.A., Velraj R.: Review on free cooling of buildings using phase change materials. Renew. Sust. Energ. Rev. 14(2010), 2819–2829.
  • 14. Shatikian V., Ziskind G., Letan R.: Numerical investigation of a PCM-based heat sink with internal fins. Int. J. Heat Mass Tran. 48(2005), 3689–3706.
  • 15. Voller V.R., Cross M., Markatos N.C.: An enthalpy method for convection/diffusion phase change. Int. J. Numer. Method. Eng. 24(1987), 271–284.
  • 16. Sessler M., Ben-Zvi I.: A system of solar collectors and storage tanks. Graduation Project 04-76 (2004), Heat Transfer Laboratory, Department of Mechanical Engineering, Ben-Gurion University of the Negev, BeerSheva, 2004.
  • 17. Ziskind G., Dubovsky V., Letan R.: Ventilation by natural convection of a one-story building. Energ. Buildings 34(2002), 91–102.
  • 18. Letan R., Dubovsky V., Ziskind G.: Passive ventilation and heating by natural convection in a multistorey building. Build. Environ. 38(2003), 197–208.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2ad962a-7f13-42f2-b45a-2ab503b2d4a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.