Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Thermal self-action of an acoustic beam with one discontinuity or several shock fronts is studied in a Newtonian fluid. The stationary self-action of a single sawtooth wave with discontinuity (or some integer number of these waves), symmetric or asymmetric, is considered in the cases of self-focusing and self-defocusing media. The results are compared with the non-stationary thermal self-action of the periodic sound. Thermal self-action of a single shock wave which propagates with the various speeds is considered.
Wydawca
Czasopismo
Rocznik
Tom
Strony
539--546
Opis fizyczny
Bibliogr. 18 poz., wykr.
Twórcy
autor
- Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
- 1. Akhmanov S.A., Sukhorukov A.P., Khokhlov R.V. (1968), Self-focusing and diffraction of light in a nonlinear medium, Sov. Phys. Usp., 10, 609–636, DOI: 10.1070/PU1968v010n05ABEH005849.
- 2. Andreev V.G., Karabutov A.A., Rudenko O.V., Sapozhnikov O.A. (1985), Observation of self-focusing of sound, JETP Lett., 41, 466–469.
- 3. Askaryan G.A. (1966), Self-focusing and focusing of ultrasound and hypersound, Sov. Phys JETP Lett., 4, 4, 144–147.
- 4. Assman V.A. et al. (1985), Observation of thermal self-effect of a sound beam in a liquid, JETP Lett., 41, 4, 182–184.
- 5. Bakhvalov N.S., Zhileikin Ya.M., Zabolotskaya E.A. (1987), Nonlinear theory of sound beams, American Institute of Physics, New York.
- 6. O’Brien Jr W.D. (2007), Ultrasound-biophysics mechanisms, Prog. Biophys. Mol. Biol., 93, 1–3, 212–255, DOI: 10.1016/j.pbiomolbio.2006.07.010.
- 7. Chan A.H., Vaezy S., Crum L.A. (2003), High-intensity Focused Ultrasound, Access Science: McGraw-Hill Education.
- 8. Gurbatov S.N., Rudenko O.V., Saichev A.I. (2011), Waves and Structures in Nonlinear Nondispersive Media, Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg.
- 9. Hamilton M.F., Khokhlova V.A., Rudenko O.V. (1997), Analytical method for describing the paraxial region of finite amplitude sound beams, J. Acoust. Soc. Am., 101, 3, 1298–1308, DOI: 10.1121/1.418158.
- 10. Karabutov A.A., Rudenko O.V., Sapozhnikov O.A. (1988), Theory of thermal self-focusing with allowance for the generation of shock waves and acoustic streaming, Sov. Phys. Acoust., 34, 4, 371–374.
- 11. Miller D. et al. (2012), Overview of Therapeutic Ultrasound Applications and Safety Considerations, J. Ultrasound Med., 31, 4, 623–634.
- 12. Perelomova A. (2006), Development of linear projecting in studies of non-linear flow. Acoustic heating induced by non-periodic sound, Physics Letters A, 357, 1, 42–47, DOI: 10.1016/j.physleta.2006.04.014.
- 13. Rudenko O.V. (2010), The 40th anniversary of the Khokhlov-Zabolotskaya equation, Acoustical Physics, 56, 4, 452–462.
- 14. Rudenko O.V., Sagatov M.M, Sapozhnikov O.A. (1990), Thermal self-focusing of sawtooth waves, Sov. Phys. JETP, 71, 449–557.
- 15. Rudenko O.V., Sapozhnikov O.A. (2004), Self-action effects for wave beams containing shock fronts, Physics-Uspekhi, 47, 9, 907–922, DOI: 10.1070/PU2004v047n09ABEH001865
- 16. Rudenko O.V., Soluyan S.I. (2005), Theoretical foundations of nonlinear acoustics, Consultants Bureau, New York, DOI: 10.1002/jcu.1870060222
- 17. Talanov V.I. (1964), About self-focusing of the the wave beams in nonlinear media, Sov. Phys. JETP Lett., 2, 5, 218–222.
- 18. Talanov V.I. (1970), About self-focusing of light in media with cubic nonlinearity, Sov. Phys. JETP Lett., 11, 6, 303–305.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2ac8674-cd78-4932-9f47-9e41b0ef697d