PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Field models in low-frequency bioelectromagnetics

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Modele polowe w niskoczęstotliwościowych problemach bioelektromagnetyzmu
Języki publikacji
EN
Abstrakty
EN
In the paper, a review of the state of the art on numerical models of the electromagnetic field in biological entities is proposed. In particular, the field produced by cells and the one in which cells and biological tissues are exposed to, is considered; low frequency problems are investigated. Issues and drawbacks of field models in bioelectromagnetics with respect to field models for industrial applications are discussed.
PL
W artykule dokonano przeglądu stanu wiedzy na temat numerycznych modeli pola elektromagnetycznego w biologicznych komórkach. W szczególności, rozważane jest pole wytwarzane przez komórki i to, na które narażone są komórki i tkanki biologiczne; badane są problemy niskiej częstotliwości.. W artykule omówiono problemy i wady spotykane w adaptacji modeli polowych w bioelektromagnetyzmie w odniesieniu do modeli polowych w zastosowaniach przemysłowych.
Rocznik
Strony
1--4
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
  • University of Pavia, Dept. of Electrical, Computer and Biomedical Engineering, Via Ferrata 5, 27100 Pavia (Italy)
Bibliografia
  • [1] Matthews F.L., West J. B., Finite element displacement analysis of a lung, J. Biomech. vol. 5 (1972), No. 6, 591-600.
  • [2] Natarajan R., Seshadri V., Electric-field distribution in the human body using finite-element method, Med Biol Eng., 14 (1975), No. 5, 489-93.
  • [3] http://www.ncbi.nlm.nih.gov/pubmed
  • [4] Di Barba P., Multiobjective shape design in electricity and magnetism, Lecture notes in electrical engineering, Springer, 2010.
  • [5] Palka R., Synthesis of magnetic fields by optimization of the shape of areas and source distributions, Archiv für Elektrotechnik, 75 (1991), No. 1, 1-7.
  • [6] Malmivuo J., Plonsey R., Bioelectromagnetism - Principles and Applications of Bioelectric and Biomagnetic Fields, Oxford University Press, New York, 1995.
  • [7] Di Barba P., Freschi F., Mognaschi M.E., Pichiecchio A., Repetto M., Savini A., and Vultaggio A., A Source Identification Problem for the Electrical Activity of Brain During Hand Movement, IEEE Transaction on Magnetics, 47 (2011), No. 5, 878-881.
  • [8] Gabriel S., Lau R. W. and Gabriel C., The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz, Phys. Med. Biol. 41 (1996), 2251-2269.
  • [9] http://niremf.ifac.cnr.it/tissprop/
  • [10] Carcangiu, S., Di Barba, P., Fanni, A., Mognaschi, M.E., Montisci, A, Comparison of multi-objective optimisation approaches for inverse magnetostatic problems, COMPEL, 26 (2007), No. 2, 293-305.
  • [11] http://it.mathworks.com/products/optimization/
  • [12] Ioannides, A.A., Bolton, J.P.R., Clarke, C.J.S., Continuous probabilistic solutions to the biomagnetic inverse problem, Inverse Problems, 6 (1990), No. 4, 523-542.
  • [13] http://www.icnirp.org/
  • [14] Behrens, S.B., Deren, M.E., Monchik, K.O., A review of bone growth stimulation for fracture treatment,Current Orthopaedic Practice, 24 (2013), No. 1, 84-91.
  • [15] Di Barba, P., Dughiero, F. , Sieni, E., Field synthesis for the optimal treatment planning in Magnetic Fluid Hyperthermia, Archives of Electrical Engineering, 61 (2012), No. 1, 57-67.
  • [16] Rosensweig, R.E, Heating magnetic fluid with alternating magnetic field, Journal of Magnetism and Magnetic Materials, 252 (2002), No. 1-3, 370-374.
  • [17] Cornacchione, M., Pellegrini, M., Fassina, L., Mognaschi, M.E., Di Siena, S., Gimmelli, R., Ambrosino, P., Soldovieri, M.V., Taglialatela, M., Gianfrilli, D., Isidori, A.M., Lenzi, A., Naro, F., β-Adrenergic response is counteracted by extremely-lowfrequency pulsed electromagnetic fields in beating cardiomyocytes,Journal of Molecular and Cellular Cardiology, 98(2016), 146-158
  • [18] Mognaschi M.E., Di Barba P., Magenes G., Lenzi A., Naro F., Fassina L., Field models and numerical dosimetry inside an extremely-low-frequency electromagnetic bioreactor: the theoretical link between the electromagnetically induced mechanical forces and the biological mechanisms of the cell tensegrity, Springerplus, 3 (2014), No. 473.
  • [19] http://www.infolytica.com
  • [20] Electromagnetic fields in biological systems, J. C. Lin Ed., CRC Press, 2011.
  • [21] Mammoto, T., Ingber, D.E., Mechanical control of tissue and organ development, Development, 137 (2010), No. 9, 1407-1420.
  • [22] Sharma N., Aggarwal L.M., Automated medical image segmentation techniques, J Med Phys., 35 (2010), No. 1, 3-14.
  • [23] Stolarska, M.A., Yangjin, K.I.M., Othmer, H.G., Multi-scale models of cell and tissue dynamics, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367 (2009), No. 1902, 3525-3553.
  • [24] Di Barba, P., Dolezel, I., Karban, P., Kus, P., Mach, F., Mognaschi, M.E., Savini, A., Multiphysics field analysis and multiobjective design optimization: A benchmark problem, Inverse Problems in Science and Engineering, 22 (2014), No. 7, 1214-1225.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2ab8bb7-f61d-4da2-b9cf-07b0192cef94
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.