Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study addresses the persistent issue of thiamphenicol (THI) accumulation in aquatic environments and its detrimental impact on biological systems. While activated carbon is commonly used for removing such organic micropollutants in advanced wastewater treatment, this research explores the innovative use of olive stones as a feedstock for activated carbon production. The novelty of this study lies in the optimization of the activated carbon preparation process using a fractional factorial design with five critical factors: concentration, heating rate, activation temperature, activation time, and impregnation ratio. By employing the methylene blue method to determine the specific surface area (SSA), the optimal conditions were identified: a phosphoric acid solid-liquid ratio of 1:2 (74.52%), a heating temperature of 550 °C at a rate of 10 °C/min, and an activation period of 120 minutes, resulting in an SSA of 53.07 m2/g. The subsequent THI adsorption tests in a fixed-bed column revealed that THI removal efficiency was inversely proportional to flow rate and initial THI concentration, while positively correlated with bed height. This study fills a critical gap by demonstrating an effective, sustainable method for producing activated carbon from agricultural waste, optimizing the process parameters for maximum efficiency in micropollutant removal.
Wydawca
Rocznik
Tom
Strony
37--53
Opis fizyczny
Bibliogr. 75 poz., rys., tab.
Twórcy
autor
- LS3MN2E-CERNE2D, Faculty of Sciences, Mohammed V University in Rabat, Av Ibn Battouta, B.P. 1014, Rabat 10000, Morocco
autor
- LS3MN2E-CERNE2D, Faculty of Sciences, Mohammed V University in Rabat, Av Ibn Battouta, B.P. 1014, Rabat 10000, Morocco
autor
- LS3MN2E-CERNE2D, Faculty of Sciences, Mohammed V University in Rabat, Av Ibn Battouta, B.P. 1014, Rabat 10000, Morocco
autor
- LS3MN2E-CERNE2D, Faculty of Sciences, Mohammed V University in Rabat, Av Ibn Battouta, B.P. 1014, Rabat 10000, Morocco
autor
- LS3MN2E-CERNE2D, ENSAM, Mohammed V University in Rabat, Av Ibn Battouta, B.P. 1014, Rabat 10000, Morocco
Bibliografia
- 1. Al-Ghouti, M.A., Sweleh, A.O., 2019. Optimizing textile dye removal by activated carbon prepared from olive stones. Environmental Technology & Innovation 16, 100488. https://doi.org/10.1016/j.eti.2019.100488
- 2. Alslaibi, T.M., Abustan, I., Ahmad, M.A., Foul, A.A., 2013. Cadmium removal from aqueous solution using microwaved olive stone activated carbon. Journal of Environmental Chemical Engineering 1, 589–599. https://doi.org/10.1016/j.jece.2013.06.028
- 3. Álvarez-Torrellas, S., Rodríguez, A., Ovejero, G., García, J., 2016. Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials. Chemical Engineering Journal 283, 936–947. https://doi.org/10.1016/j.cej.2015.08.023
- 4. Asfaram, A., Ghaedi, M., Agarwal, S., Tyagi, I., Gupta, V.K., 2015. Removal of basic dye AuramineO by ZnS:Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design. RSC Advances 5, 18438–18450. https://doi.org/10.1039/C4RA15637D
- 5. Azmi, N.Bt., Bashir, M.J.K., Sethupathi, S., Wei, L.J., Aun, N.C., 2015. Stabilized landfill leachate treatment by sugarcane bagasse derived activated carbon for removal of color, COD and NH3-N – Optimization of preparation conditions by RSM. Journal of Environmental Chemical Engineering 3, 1287–1294. https://doi.org/10.1016/j.jece.2014.12.002
- 6. Azoulay, K., Bencheikh, I., Moufti, A., Dahchour, A., Mabrouki, J., El Hajjaji, S., 2020. Comparative study between static and dynamic adsorption efficiency of dyes by the mixture of palm waste using the central composite design. Chemical Data Collections 27, 100385. https://doi.org/10.1016/j.cdc.2020.100385
- 7. Baccar, R., Bouzid, J., Feki, M., Montiel, A., 2009. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions. Journal of Hazardous Materials 162, 1522–1529. https://doi.org/10.1016/j.jhazmat.2008.06.041
- 8. Baccar, R., Sarrà, M., Bouzid, J., Feki, M., Blánquez, P., 2012. Removal of pharmaceutical compounds by activated carbon prepared from agricultural byproduct. Chemical Engineering Journal 211–212, 310–317. https://doi.org/10.1016/j.cej.2012.09.099
- 9. Balogoun, C.K., Bawa, M.L., Osseni, S., Aina, M., 2015. Préparation des charbons actifs par voie chimique à l’acide phosphorique à base de coque de noix de coco. International Journal of Biological and Chemical Sciences 9, 563–580. https://doi.org/10.4314/ijbcs.v9i1
- 10. Baş, D., Boyacı, İ.H., 2007. Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering 78, 836–845. https://doi.org/10.1016/j.jfoodeng.2005.11.024
- 11. Benaddi, H., Legras, D., Rouzaud, J.N., Beguin, F., 1998. Influence of the atmosphere in the chemical activation of wood by phosphoric acid. Carbon 36, 306–309. https://doi.org/10.1016/S0008-6223(98)80123-1
- 12. Bencheikh, I., Azoulay, K., Mabrouki, J., El Hajjaji, S., Moufti, A., Labjar, N., 2021. The use and the performance of chemically treated artichoke leaves for textile industrial effluents treatment. Chemical Data Collections 31, 100597. https://doi.org/10.1016/j.cdc.2020.100597
- 13. Benzekri, M.B., Benderdouche, N., Bestani, B., Douara, N., Duclaux, L., 2018. Valorization of olive stones into a granular activated carbon for the removal of Methylene blue in batch and fixed bed modes. Journal of Materials and Environmental Science 9, 272.
- 14. Bestani, B., Benderdouche, N., Benstaali, B., Belhakem, M., Addou, A., 2008. Methylene blue and iodine adsorption onto an activated desert plant. Bioresource Technology 99, 8441–8444. https://doi.org/10.1016/j.biortech.2008.02.053
- 15. Bhattacharya, S., 2021. Central Composite Design for Response Surface Methodology and Its Application in Pharmacy. 1–19. https://doi.org/10.5772/intechopen.95835
- 16. Bouiti, K., Al-sharabi, H.A., Bouhlal, F., Abidi, B., Labjar, N., Bensemlali, M., Hajjaji, S.E., 2024. Response surface methodology for optimizing corrosion inhibition: investigating the synergistic effect of Eriobotrya japonica extract and potassium iodide. Euro-Mediterr J Environ Integr. https://doi.org/10.1007/s41207-023-00457-0
- 17. Busch, W., Schmidt, S., Kühne, R., Schulze, T., Krauss, M., Altenburger, R., 2016. Micropollutants in European rivers: A mode of action survey to support the development of effect-based tools for water monitoring. Environmental Toxicology and Chemistry 35, 1887–1899. https://doi.org/10.1002/etc.3460
- 18. Carvalho, I.T., Santos, L., 2016. Antibiotics in the aquatic environments: A review of the European scenario. Environment International 94, 736–757. https://doi.org/10.1016/j.envint.2016.06.025
- 19. Chakraborty, P., Show, S., Banerjee, S., Halder, G., 2018. Mechanistic insight into sorptive elimination of ibuprofen employing bi-directional activated biochar from sugarcane bagasse: Performance evaluation and cost estimation. Journal of Environmental Chemical Engineering 6, 5287–5300. https://doi.org/10.1016/j.jece.2018.08.017
- 20. Corral-Bobadilla, M., Lostado-Lorza, R., Somovilla-Gómez, F., Escribano-García, R., 2021. Effective use of activated carbon from olive stone waste in the biosorption removal of Fe(III) ions from aqueous solutions. Journal of Cleaner Production 294, 126332. https://doi.org/10.1016/j.jclepro.2021.126332
- 21. Cruz-Olivares, J., Pérez-Alonso, C., Barrera-Díaz, C., Ureña-Nuñez, F., Chaparro-Mercado, M.C., Bilyeu, B., 2013. Modeling of lead (II) biosorption by residue of allspice in a fixed-bed column. Chemical Engineering Journal 228, 21–27.
- 22. Das, S., Mishra, S., 2017. Box-Behnken statistical design to optimize preparation of activated carbon from Limonia acidissima shell with desirability approach. Journal of Environmental Chemical Engineering 5, 588–600. https://doi.org/10.1016/j.jece.2016.12.034
- 23. Deblonde, T., Cossu-Leguille, C., Hartemann, P., 2011. Emerging pollutants in wastewater: A review of the literature. International Journal of Hygiene and Environmental Health, The second European PhD students workshop: Water and health ? Cannes 2010 214, 442–448. https://doi.org/10.1016/j.ijheh.2011.08.002
- 24. Dehkhoda, A.M., Ellis, N., Gyenge, E., 2014. Electrosorption on activated biochar: effect of thermochemical activation treatment on the electric double layer capacitance. J Appl Electrochem 44, 141–157. https://doi.org/10.1007/s10800-013-0616-4
- 25. Delgado, N., Marino, D., Capparelli, A., CasasZapata, J.C., Navarro, A., 2022. Pharmaceutical compound removal using down-flow fixed bed filters with powder activated carbon: A novel configuration. Journal of Environmental Chemical Engineering 10, 107706. https://doi.org/10.1016/j.jece.2022.107706
- 26. DeṁRoğlu, S., Erdoğan, F., Akin, E., Karavana, H.A., Özgür, M., 2017. Natural Fiber Reinforced Polyurethane Rigid Foam 13.
- 27. Di Leo, G., Sardanelli, F., 2020. Statistical significance: p value, 0.05 threshold, and applications to radiomics—reasons for a conservative approach. European Radiology Experimental 4, 18. https://doi.org/10.1186/s41747-020-0145-y
- 28. dos Reis, G.S., Wilhelm, M., Silva, T.C. de A., Rezwan, K., Sampaio, C.H., Lima, E.C., de Souza, S.M.A.G.U., 2016. The use of design of experiments for the evaluation of the production of surface rich activated carbon from sewage sludge via microwave and conventional pyrolysis. Applied Thermal Engineering 93, 590–597. https://doi.org/10.1016/j.applthermaleng.2015.09.035
- 29. Durán-Valle, C., Gómez-Corzo, M., Pastor-Villegas, J., Gómez-Serrano, V., 2005. Study of cherry stones as raw material in preparation of carbonaceous adsorbents. Journal of Analytical and Applied Pyrolysis - J ANAL APPL PYROL 73, 59–67. https://doi.org/10.1016/j.jaap.2004.10.004
- 30. Elabdouni, A., Haboubi, K., Merimi, I., El Youbi, M.S.M., 2020. Olive mill wastewater (OMW) production in the province of Al-Hoceima (Morocco) and their physico-chemical characterization by mill types. Materials Today: Proceedings, The Third International Conference on Materials and Environmental Science 27, 3145–3150. https://doi.org/10.1016/j.matpr.2020.03.806
- 31. Fallah, N., Taghizadeh, M., 2020. Continuous fixedbed adsorption of Mo(VI) from aqueous solutions by Mo(VI)-IIP: Breakthrough curves analysis and mathematical modeling. Journal of Environmental Chemical Engineering 8, 104079. https://doi.org/10.1016/j.jece.2020.104079
- 32. Freitas, J.V., Nogueira, F.G.E., Farinas, C.S., 2019. Coconut shell activated carbon as an alternative adsorbent of inhibitors from lignocellulosic biomass pretreatment. Industrial Crops and Products 137, 16–23. https://doi.org/10.1016/j.indcrop.2019.05.018
- 33. García-Mateos, F.J., Ruiz-Rosas, R., Marqués, M.D., Cotoruelo, L.M., Rodríguez-Mirasol, J., Cordero, T., 2015. Removal of paracetamol on biomassderived activated carbon: Modeling the fixed bed breakthrough curves using batch adsorption experiments. Chemical Engineering Journal 279, 18–30. https://doi.org/10.1016/j.cej.2015.04.144
- 34. Gomez-Serrano, V., Pastor-Villegas, J., DuranValle, C.J., Valenzuela-Calahorro, C., 1996. Heat treatment of rockrose char in air. Effect on surface chemistry and porous texture. Carbon 34, 533–538. https://doi.org/10.1016/0008-6223(96)00001-2
- 35. González-López, M.E., Pérez-Fonseca, A.A., Arellano, M., Gómez, C., Robledo-Ortíz, J.R., 2020. Fixed-bed adsorption of Cr(VI) onto chitosan supported on highly porous composites. Environmental Technology & Innovation 19, 100824. https://doi.org/10.1016/j.eti.2020.100824
- 36. Gueye, M., Richardson, Y., Kafack, F.T., Blin, J., 2014. High efficiency activated carbons from African biomass residues for the removal of chromium(VI) from wastewater. Journal of Environmental Chemical Engineering 2, 273–281. https://doi.org/10.1016/j.jece.2013.12.014
- 37. Hameed, B.H., Tan, I.A.W., Ahmad, A.L., 2008. Optimization of basic dye removal by oil palm fibre-based activated carbon using response surface methodology. Journal of Hazardous Materials 158, 324–332. https://doi.org/10.1016/j.jhazmat.2008.01.088
- 38. Hazzaa, R., Hussein, M., 2015. Adsorption of cationic dye from aqueous solution onto activated carbon prepared from olive stones. Environmental Technology & Innovation 4, 36–51. https://doi.org/10.1016/j.eti.2015.04.002
- 39. Heidarinejad, Z., Dehghani, M.H., Heidari, M., Javedan, G., Ali, I., Sillanpää, M., 2020a. Methods for preparation and activation of activated carbon: a review. Environ Chem Lett 18, 393–415. https://doi.org/10.1007/s10311-019-00955-0
- 40. Heidarinejad, Z., Dehghani, M.H., Heidari, M., Javedan, G., Ali, I., Sillanpää, M., 2020b. Methods for preparation and activation of activated carbon: a review. Environ Chem Lett 18, 393–415. https://doi.org/10.1007/s10311-019-00955-0
- 41. Hu, J., Shen, D., Wu, S., Zhang, H., Xiao, R., 2014. Effect of temperature on structure evolution in char from hydrothermal degradation of lignin. Journal of Analytical and Applied Pyrolysis 106, 118–124. https://doi.org/10.1016/j.jaap.2014.01.008
- 42. Iheanacho, O.C., Nwabanne, J.T., Obi, C.C., Onu, C.E., 2021. Packed bed column adsorption of phenol onto corn cob activated carbon: linear and nonlinear kinetics modeling. South African Journal of Chemical Engineering 36, 80–93. https://doi.org/10.1016/j.sajce.2021.02.003
- 43. Ismail, I.S., Rashidi, N.A., Yusup, S., 2022. Production and characterization of bamboo-based activated carbon through single-step H3PO4 activation for CO2 capture. Environmental Science and Pollution Research 29, 12434–12440. https://doi.org/10.1007/s11356-021-15030-x
- 44. Itodo, A.U., Abdulrahman, F.W., Hassan, L.G., Maigandi, S.A., Itodo, H.U., 2010. Application of methylene blue and iodine adsorption in the measurement of specific surface area by four acid and salt treated activated carbons. New York science journal 3, 25–33.
- 45. Jamil, F., Al-Muhtaseb, A.H., Naushad, M., Baawain, M., Al-Mamun, A., Saxena, S.K., Viswanadham, N., 2020. Evaluation of synthesized green carbon catalyst from waste date pits for tertiary butylation of phenol. Arabian Journal of Chemistry 13, 298–307. https://doi.org/10.1016/j.arabjc.2017.04.009
- 46. Jawad, A.H., Ishak, M.M., Farhan, A.M., Ismail, K., 2017. Response surface methodology approach for optimization of color removal and COD reduction of methylene blue using microwave-induced NaOH activated carbon from biomass waste. Water Treat 62, 208–220.
- 47. Jiang, G., Qiao, J., Hong, F., 2012. Application of phosphoric acid and phytic acid-doped bacterial cellulose as novel proton-conducting membranes to PEMFC. International Journal of Hydrogen Energy 37, 9182–9192. https://doi.org/10.1016/j.ijhydene.2012.02.195
- 48. Jodeh, S., Abdelwahab, F., Jaradat, N., Warad, I., Jodeh, W., 2016. Adsorption of diclofenac from aqueous solution using Cyclamen persicum tubers based activated carbon (CTAC). Journal of the Association of Arab Universities for Basic and Applied Sciences 20, 32–38. https://doi.org/10.1016/j.jaubas.2014.11.002
- 49. Kavianinia, I., Plieger, P.G., Kandile, N.G., Harding, D.R.K., 2012. Fixed-bed column studies on a modified chitosan hydrogel for detoxification of aqueous solutions from copper (II). Carbohydrate Polymers 90, 875–886. https://doi.org/10.1016/j.carbpol.2012.06.014
- 50. Kaya, N., Atagur, M., Akyuz, O., Seki, Y., Sarikanat, M., Sutcu, M., Seydibeyoglu, M.O., Sever, K., 2018. Fabrication and characterization of olive pomace filled PP composites. Composites Part B: Engineering 150, 277–283. https://doi.org/10.1016/j.compositesb.2017.08.017
- 51. Li, K., Zhang, P., Ge, L., Ren, H., Yu, C., Chen, X., Zhao, Y., 2014. Concentration-dependent photodegradation kinetics and hydroxyl-radical oxidation of phenicol antibiotics. Chemosphere 111, 278–282. https://doi.org/10.1016/j.chemosphere.2014.04.052
- 52. Li, S., Han, K., Li, J., Li, M., Lu, C., 2017. Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous and Mesoporous Materials 243, 291–300. https://doi.org/10.1016/j.micromeso.2017.02.052
- 53. Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S., Wang, X.C., 2014. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of The Total Environment 473–474, 619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065
- 54. Mailler, R., Gasperi, J., Patureau, D., Vulliet, E., Delgenes, N., Danel, A., Deshayes, S., Eudes, V., Guerin, S., Moilleron, R., Chebbo, G., Rocher, V., 2017. Fate of emerging and priority micropollutants during the sewage sludge treatment: Case study of Paris conurbation. Part 1: Contamination of the different types of sewage sludge. Waste Management 59, 379–393. https://doi.org/10.1016/j.wasman.2016.11.010
- 55. Maita, K., Kuwahara, M., Kosaka, T., Inui, K., Sugimoto, K., Takeuchi, Y., Hatakenaka, N., Harada, T., Yasuhara, K., Mitsumori, K., 1999. Testicular Toxicity of Thiamphenicol in Sprague-Dawley Rats. Journal of Toxicologic Pathology 12, 27–27. https://doi.org/10.1293/tox.12.27
- 56. Mansouri, H., Carmona, R.J., Gomis-Berenguer, A., Souissi-Najar, S., Ouederni, A., Ania, C.O., 2015. Competitive adsorption of ibuprofen and amoxicillin mixtures from aqueous solution on activated carbons. Journal of Colloid and Interface Science, Liquid Films, Interfaces and Colloidal Dispersions 449, 252–260. https://doi.org/10.1016/j.jcis.2014.12.020
- 57. Miguet, M., Goetz, V., Plantard, G., Jaeger, Y., 2016. Sustainable Thermal Regeneration of Spent Activated Carbons by Solar Energy: Application to Water Treatment. Ind. Eng. Chem. Res. 55, 7003–7011. https://doi.org/10.1021/acs.iecr.6b01260
- 58. Mustafa, I., Fathurrahmi, Suriarah, Farida, M., Ahmad, K., 2022. Palm shell-derived activated carbon adsorbent is better than that of coconut shell: comparative studies of cod adsorption from palm oil mill effluent. Rasayan Journal of Chemistry 15, 738–744. https://doi.org/10.31788/RJC.2022.1526804
- 59. Patel, P., Gupta, S., Mondal, P., 2022. Modeling of continuous adsorption of greywater pollutants onto sawdust activated carbon bed integrated with sand column. Journal of Environmental Chemical Engineering 10, 107155. https://doi.org/10.1016/j.jece.2022.107155
- 60. Putra, E.K., Pranowo, R., Sunarso, J., Indraswati, N., Ismadji, S., 2009. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water Research 43, 2419–2430. https://doi.org/10.1016/j.watres.2009.02.039
- 61. Rosene, M.R., Ozcan, M., Manes, M., 1976. Application of the Polanyi adsorption potential theory to adsorption from solution on activated carbon. 8. Ideal, nonideal, and competitive adsorption of some solids from water solution. J. Phys. Chem. 80, 2586–2589. https://doi.org/10.1021/j100564a011
- 62. Sabio, E., Zamora, F., Gañan, J., González-García, C.M., González, J.F., 2006. Adsorption of p-nitrophenol on activated carbon fixed-bed. Water Research 40, 3053– 3060. https://doi.org/10.1016/j.watres.2006.06.018
- 63. Samghouli, N., Bencheikh, I., Azoulay, K., Abahdou, F.-Z., Mabrouki, J., El Hajjaji, S., 2022. Study of Piroxicam Removal from Wastewater by Artichoke Waste Using NemrodW® Software: Statistical Analysis. 29–42. https://doi.org/10.1007/978-3-030-90083-0_3
- 64. Senthilkumar, T., Chattopadhyay, S.K., Miranda, L.R., 2017. Optimization of activated carbon preparation from pomegranate peel (Punica granatum Peel) using RSM. Chemical Engineering Communications 204, 238–248. https://doi.org/10.1080/00986445.2016.1262358
- 65. Seydibeyoğlu, M.Ö., Demiroglu, S., Erdoğan, F., Akın, E., Ayvalık, A., Karavana, H.A., 2017. Natural Fiber Reinforced Polyurethane Rigid Foam [WWW Document]. undefined. URL /paper/NATURAL-FIBER-REINFORCED-POLYURETHANERIGID-FOAM-Seydibeyo%C4%9Flu-Demiroglu/dd0eff97a680d2c8b0c57ee08f428f481617fbcc (accessed 10.2.20).
- 66. Sim, W.-J., Lee, J.-W., Lee, E.-S., Shin, S.-K., Hwang, S.-R., Oh, J.-E., 2011. Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere 82, 179–186. https://doi.org/10.1016/j.chemosphere.2010.10.026
- 67. Song, J., Zou, W., Bian, Y., Su, F., Han, R., 2011. Adsorption characteristics of methylene blue by peanut husk in batch and column modes. Desalination 265, 119–125. https://doi.org/10.1016/j.desal.2010.07.041
- 68. Sotelo, J.L., Ovejero, G., Rodríguez, A., Álvarez, S., Galán, J., García, J., 2014. Competitive adsorption studies of caffeine and diclofenac aqueous solutions by activated carbon. Chemical Engineering Journal 240, 443–453. https://doi.org/10.1016/j.cej.2013.11.094
- 69. Sotelo, J.L., Rodríguez, A., Álvarez, S., García, J., 2012a. Removal of caffeine and diclofenac on activated carbon in fixed bed column. Chemical Engineering Research and Design 90, 967–974. https://doi.org/10.1016/j.cherd.2011.10.012
- 70. Sotelo, J.L., Rodríguez, A., Álvarez, S., García, J., 2012b. Removal of caffeine and diclofenac on activated carbon in fixed bed column. Chemical Engineering Research and Design 90, 967–974. https://doi.org/10.1016/j.cherd.2011.10.012
- 71. Suhas, Gupta, V.K., Carrott, P.J.M., Singh, R., Chaudhary, M., Kushwaha, S., 2016. Cellulose: A review as natural, modified and activated carbon adsorbent. Bioresource Technology 216, 1066–1076. https://doi.org/10.1016/j.biortech.2016.05.106
- 72. Sun, Y., Yue, Q., Gao, B., Huang, L., Xu, X., Li, Q., 2012. Comparative study on characterization and adsorption properties of activated carbons with H3PO4 and H4P2O7 activation employing Cyperus alternifolius as precursor. Chemical Engineering Journal 181–182, 790–797. https://doi.org/10.1016/j.cej.2011.11.098
- 73. Tarley, C.R.T., Silveira, G., dos Santos, W.N.L., Matos, G.D., da Silva, E.G.P., Bezerra, M.A., Miró, M., Ferreira, S.L.C., 2009. Chemometric tools in electroanalytical chemistry: Methods for optimization based on factorial design and response surface methodology. Microchemical Journal, Polar Chemistry 92, 58–67. https://doi.org/10.1016/j.microc.2009.02.002
- 74. Topare, N.S., Bokil, S.A., 2021. Adsorption of textile industry effluent in a fixed bed column using activated carbon prepared from agro-waste materials. Materials Today: Proceedings, 1st International Conference on Energy, Material Sciences and Mechanical Engineering 43, 530–534. https://doi.org/10.1016/j.matpr.2020.12.029
- 75. Xu, F., Yu, J., Tesso, T., Dowell, F., Wang, D., 2013. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A minireview. Applied Energy 104, 801–809. https://doi.org/10.1016/j.apenergy.2012.12.019
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2a92b5d-b918-4b8b-a719-a93cef1ee15e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.