PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Crustal thickening in northern Yunnan, SE Tibet, linked to the control of the regional abyssal faults on mid‑lower crustal flow: evidence from ambient noise tomography

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is generally recognized that the crustal flow in the Yunnan region is attributed to the continental collision between the Indian and Eurasian plates. Therefore, studying the crustal flow and its dynamic processes in this region can provide valuable insights for understanding the collision process and crustal thickening. The S-wave velocity can provide constraints on the lithological state, interface delineation, and geodynamic processes of the Earth's interior, which are critical for explaining the properties of the crustal flow within a particular region. In this study, we employ 2-year continuous waveforms of the vertical component of 58 seismic stations using ambient noise tomography in the Yunnan region to build a 3-D S-wave velocity crust model. On this basis, the spatial distribution and dynamic processes of regional crustal flow are discussed. Our model reveals the distribution features of the mid-lower crustal flow with different deformation mechanisms at different depths. Finally, a dynamical model is proposed to interpret the dynamic processes of the regional mid-lower crustal flow. The model reveals that a large amount of crustal flow material on the northeastern side of the Red river fault is partially blocked by the Emeishan large igneous province, resulting in the lateral escape and rotation of the mid-lower crustal flow. Another part of the crustal flow material is controlled by the strike of the Red river fault, and the high-velocity Indo-China block on the southwestern side of the Red river fault prevents the crustal flow not escape to this area. We believe that the control effect of the Red river fault on the mid-lower crustal flow may be one of the main reasons for the crustal thickening and surface uplift on the northeastern side of the Red river fault.
Czasopismo
Rocznik
Strony
1643--1657
Opis fizyczny
Bibliogr. 73 poz., rys.
Twórcy
autor
  • School of Civil Engineering and Architecture, Hubei Polytechnic University, No. 16 Guilin North Road, Huangshi 435003, China
Bibliografia
  • 1. Agius MR, Lebedev S (2014) Shear-velocity structure, radial anisotropy and dynamics of the Tibetan crust. Geophys J Int 199(3):1395–1415
  • 2. Avouac JP, Tapponnier P (1993) Kinematic model of active deformation in central Asia. Geophys Res Lett 20(10):895–898
  • 3. Bai DH, Unsworth MJ, Meju MA, Ma XB, Teng JW, Kong XR, Sun Y, Sun J, Wang LF, Jiang CS, Zhao CP, Xiao PF, Liu M (2010) Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nat Geosci 3(5):358–362
  • 4. Bensen GD, Ritzwoller MH, Barmin MP, Levshin AL, Lin F, Moschetti MP, Shapiro NM, Yang Y (2007) Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int 169(3):1239–1260
  • 5. Cai Y, Wu JP, Fang LH, Wang WL, Yi S (2016) Crustal anisotropy and deformation of the southeastern margin of the Tibetan plateau revealed by Pms splitting. J Asian Earth Sci 121:120–126
  • 6. Çakır Ö (2018) Seismic crust structure beneath the Aegean region in southwest Turkey from radial anisotropic inversion of Rayleigh and Love surface waves. Acta Geophys 66(6):1303–1340
  • 7. Chang LJ, Wang CY, Ding ZF (2006) A study on SKS splitting beneath the Yunnan region. Chin J Geophys 49(1):197–204
  • 8. Chen M, Huang H, Yao HJ, Hilst RDVD, Niu FL (2014) Low wave speed zones in the crust beneath SE Tibet revealed by ambient noise adjoint tomography. Geophys Res Lett 41(2):334–340
  • 9. Chen HP, Zhu LB, Su YJ (2016) Low velocity crustal flow and crust-mantle coupling mechanism in Yunnan, SE Tibet, revealed by 3D S-wave velocity and azimuthal anisotropy. Tectonophysics 685:8–20
  • 10. Clark MK, Royden LH (2000) Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology 28(8):703–706
  • 11. Clark MK, Bush JWM, Royden LH (2005) Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau. Geophys J Int 162:575–590
  • 12. Dai A, Tang CC, Liu L, Xu R (2020) Seismic attenuation tomography in southwestern China: insight into the evolution of crustal flow in the Tibetan Plateau. Tectonophysics 792:228589
  • 13. Deng YF, Chen Y, Wang P, Essa KS, Xu T, Liang XF, Badal J (2016) Magmatic underplating beneath the Emeishan large igneous province (South China) revealed by the COMGRA-ELIP experiment. Tectonophysics 672:16–23
  • 14. Gao X, Guo Z, Wang W, Wu YM (2014) Crustal structure beneath the central Tien Shan from ambient noise tomography. Terra Nova 26(6):469–476
  • 15. Guo Z, Gao X, Yao HJ, Wang W (2017) Depth variations of azimuthal anisotropy beneath the Tian Shan Mt range (NW China) from ambient noise tomography. J Asian Earth Sci 138:161–172
  • 16. He RZ, Shang XF, Yu CQ, Zhang HJ, van der Hilst RD (2014) A unified map of Moho depth and Vp/Vs ratio of continental China by receiver function analysis. Geophys J Int 199(3):1910–1918
  • 17. He X, Zhao LF, Xie XB, Tian XB, Yao ZX (2021) Weak crust in south-east Tibetan Plateau revealed by Lg-wave attenuation tomography: implications for crustal material escape. J Geophys Res: Solid Earth 126(3):e2020JB020748
  • 18. Herrmann RB, Ammon CJ (2004) Surface waves, receiver functions and crustal structure. Comput Program Seismol: Vers 3:30
  • 19. Hua YJ, Zhang SX, Li MK, Wu TF, Qin WB, Wang F, Zhang B (2018) A new geodynamic model related to seismicity beneath the southeastern margin of the Tibetan Plateau revealed by regional tomography. Geophys J Int 214(2):933–951
  • 20. Hua YJ, Zhang SX, Li MK, Wu TF, Zou CY, Liu L (2019) Magma system beneath Tengchong volcanic zone inferred from local earthquake seismic tomography. J Volcanol Geoth Res 377:1–16
  • 21. Huang, J.L., Zhao, D.P., Zheng, S.H., 2002. Lithospheric structure and its relationship to seismic and volcanic activity in south-west China. Journal of Geophysical Research: Solid Earth, 107(B10).
  • 22. Huchon P, Pichon XL, Rangin C (1994) Indochina Peninsula and the collision of India and Eurasia. Geology 22(1):27–30
  • 23. Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the Earth from traveltimes. Geophys J Int 122(1):108–124
  • 24. Kern H, Popp T, Gorbatsevich F, Zharikov A, Lobanov KV, Smirnov YP (2001) Pressure and temperature dependence of V P and VS in rocks from the superdeep well and from surface analogues at Kola and the nature of velocity anisotropy. Tectonophysics 338(2):113–134
  • 25. Laske G, Masters G, Ma Z, Pasyanos M (2013) Update on CRUST1.0-A 1-degree global model of Earth’s crust. Geophys Res Abstr 15:2658
  • 26. Lei JS, Zhao DP, Su YJ (2009) Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data. J Geophys Res: Solid Earth 114:B5302
  • 27. Li YH, Wu QJ, Zhang RQ, Tian XB, Zeng RS (2008) The crust and upper mantle structure beneath Yunnan from joint inversion of receiver functions and Rayleigh wave dispersion data. Phys Earth Planet Inter 170(1):134–146
  • 28. Li YH, Wu QJ, Pan JT, Sun L (2012) S-wave velocity structure of northeastern China from joint inversion of Rayleigh wave phase and group velocities. Geophys J Int 190(1):105–115
  • 29. Li CY, Jiang XD, Li DY, Gong W, Mi CY (2016a) Tectonic uplift and its regime in the central southern segment of the Red River fault zone since Pliocene. Period Ocean Univer China 46(7):90–98
  • 30. Li MK, Zhang SX, Wang F, Wu TF, Qin WB (2016b) Crustal and upper-mantle structure of the Southeastern Tibetan Plateau from joint analysis of surface wave dispersion and receiver function and its tectonic implications. J Asian Earth Sci 117:52–63
  • 31. Li YJ, Liu SF, Chen LW, Du Y, Li H, Liu DY (2017) Mechanism of crustal deformation in the Sichuan-Yunnan region, southeastern Tibetan Plateau: insights from numerical modeling. J Asian Earth Sci 146:142–151
  • 32. Li MK, Zhang SX, Wu TF, Hua YJ, Zhang B (2018) Fine crustal and uppermost mantle S-wave velocity structure beneath the Tengchong volcanic area inferred from receiver function and surface-wave dispersion: constraints on magma chamber distribution. Bull Volcanol 80(3):1–12
  • 33. Li L, Zhang XZ, Liao J, Liang YL, Dong SX (2021) Geophysical constraints on the nature of lithosphere in central and eastern Tibetan plateau. Tectonophysics 804:228722
  • 34. Liang SM, Gan WJ, Shen CZ, Xiao GR, Liu J, Chen WT, Ding XG, Zhou DM (2013) Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. J Geophys Res: Solid Earth 118(10):5722–5732
  • 35. Liu ZK, Huang JL, Yao HJ (2016) Anisotropic Rayleigh wave tomography of Northeast China using ambient seismic noise. Phys Earth Planet Inter 256:37–48
  • 36. Liu W, Wu QJ, Zhang FX (2019) Crustal structure of southeastern Tibetan Plateau inferred from double-difference tomography. Acta Seismol Sin 41(2):155–168
  • 37. Liu YD, Li L, van Wijk JV, Li AB, Fu YV (2021) Surface-wave tomography of the Emeishan large igneous province (China): magma storage system, hidden hotspot track, and its impact on the Capitanian mass extinction. Geology 49(9):1032–1037
  • 38. Lu LY, He ZQ, Ding ZF, Wang CY (2014) Azimuth anisotropy and velocity heterogeneity of Yunnan area based on seismic ambient noise. Chin J Geophys 57(3):822–836
  • 39. Montagner JP (1986) Regional three-dimensional structures using long-period surface waves. Annales Geophy 4(B3):283–294
  • 40. Molnar P, Tapponnier P (1975) Cenozoic tectonics of Asia: effects of a continental collision. Science 189(4201):419–426
  • 41. Morley CK (2002) A tectonic model for the Tertiary evolution of strike-slip faults and rift basins in SE Asia. Tectonophysics 347(4):189–215
  • 42. Peng J, Huang JL, Liu ZK, Xing K (2020) Constraints on S-wave velocity structures of the lithosphere in mainland China from broadband ambient noise tomography. Phys Earth Planet Int
  • 43. Qiao L, Yao HJ, Lai YC, Huang BS, Zhang P (2018) Crustal structure of Southwest China and northern Vietnam from ambient noise tomography: Implication for the large-scale material transport model in SE Tibet. Tectonics 37(5):1492–1506
  • 44. Qin WB, Zhang SX, Li MK, Wu TF, Zhang CY (2018) Distribution of intra-crustal low velocity zones beneath Yunnan from seismic ambient noise tomography. J Earth Sci 29(6):1409–1418
  • 45. Royden LH, Burchfiel BC, King RW, Wang E, Chen ZL, Shen F, Liu YP (1997) Surface deformation and lower crustal flow in eastern Tibet. Science 276(5313):788–790
  • 46. Royden LH, Burchfiel BC, van der Hilst RD (2008) The geological evolution of the Tibetan Plateau. Science 321(5892):1054–1058
  • 47. Sabra KG, Gerstoft P, Roux P, Kuperman WA (2005) Extracting time-domain Green’s function estimates from ambient seismic noise. Geophys Res Lett 32:L03310
  • 48. Tapponnier P, Peltzer G, Le Dain AY, Armijo R, Cobbold P (1982) Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology 10(12):611–616
  • 49. Tapponnier P, Xu ZQ, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang JS (2001) Oblique stepwise rise and growth of the Tibet Plateau. Science 294(5547):1671–1677
  • 50. Tarantola A, Valette B (1982) Generalized nonlinear inverse problems solved using the least squares criterion. Rev Geophys 20(2):219–232
  • 51. Unsworth MJ, Jones AG, Wei W, Marquis G, Gokarn SG, Spratt JE, the INDEPTH-MT team. (2005) Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data. Nature 438(7064):78–81
  • 52. Wang M, Shen ZK (2020) Present-day crustal deformation of continental China derived from GPS and its tectonic implications. J Geophys Res: Solid Earth 125:e2019JB018774
  • 53. Wang JH, Yin A, Harrison TM, Grove M, Zhang YQ, Xie GH (2001) A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth Planet Sci Lett 188(1):123–133
  • 54. Wei W, Zhao DP, Xu JD (2013) P-wave anisotropic tomography in Southeast Tibet: new insight into the lower crustal flow and seismotectonics. Phys Earth Planet Inter 222:47–57
  • 55. Wessel P, Smith WHF (1998) New, improved version of the generic mapping tools released. Eos Trans AGU 79(47):579
  • 56. Wu TF, Zhang SX, Li MK, Qin WB, Zhang CY (2016) Two crustal flowing channels and volcanic magma migration underneath the SE margin of the Tibetan Plateau as revealed by surface wave tomography. J Asian Earth Sci 132:25–29
  • 57. Wu TF, Zhang SX, Li MK, Hong M, Hua YJ (2019) Complex deformation within the crust and upper mantle beneath SE Tibet revealed by anisotropic Rayleigh wave tomography. Phys Earth Planet Int 286:165–178
  • 58. Wu TF, Zhang SX, Cao ZJ, Li MK, Hua YJ, Fu XY, Wei Y (2020) Lithospheric structure of Hubei Province, central China, from Rayleigh wave tomography: insight into the spatial contact relationship between the Yangtze Plate and the eastern Qinling-Dabie orogenic belt. Geophys J Int 221(3):1669–1683
  • 59. Xu XW, Wen XZ, Zheng RZ, Ma WT, Song FM, Yu GH (2003) Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China. Sci China, Ser D Earth Sci 46(2):210–226
  • 60. Xu Y, Yang XT, Liu JH (2013) Tomographic study of crustal velocity structures in the Yunnan region southwest China. Chin J Geophys 56(6):1904–1914
  • 61. Xu T, Zhang ZJ, Liu BF, Chen Y, Zhang MH, Tian XB, Xu YG, Teng JW (2015) Crustal velocity structure in the Emeishan large igneous province and evidence of the Permian mantle plume activity. Sci China Earth Sci 58(7):1133–1147
  • 62. Xu C, Liu ZW, Luo ZC, Wu YH, Wang HH (2017) Moho topography of the Tibetan plateau using multi-scale gravity analysis and its tectonic implications. J Asian Earth Sci 138:378–386
  • 63. Yanovskaya TB, Kizima ES, Antonova LM (1998) Structure of the crust in the Black Sea and adjoining regions from surface wave data. J Seismolog 2(4):303–316
  • 64. Yao HJ, van der Hilst RD, Hoop MVD (2006) Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase Veloc Maps Geophys J Int 166(2):732–744
  • 65. Ye T, Huang QH, Chen XB (2018a) Three-dimensional deep electrical structure and seismogenic environment of Nantinghe fault zone in southwestern Yunnan, China. Chin J Geophys 61(11):4504–4517
  • 66. Ye T, Huang QH, Chen XB, Zhang HQ, Chen YJ, Zhao L, Zhang Y (2018b) Magma chamber and crustal channel flow structures in the Tengchong volcano area from 3-D MT inversion at the intracontinental block boundary southeast of the Tibetan Plateau. J Geophys Res: Solid Earth 123:11112–11126
  • 67. Yi S, Freymueller JT, Sun WK (2016) How fast is the middle-lower crust flowing in eastern Tibet? A constraint from geodetic observations. J Geophys Res: Solid Earth 121(9):6903–6915
  • 68. Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan Orogen. Annu Rev Earth Planet Sci 28(28):211–280
  • 69. Zhang PZ (2013) A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau. Tectonophysics 584:7–22
  • 70. Zhang EH, Lou H, Jia SX, Li YH (2013) The deep crust structure characteristics beneath western Yunnan. Chin J Geophys 56(6):1915–1927
  • 71. Zhao LF, Xie XB, He JK, Tian XB, Yao ZX (2013) Crustal flow pattern beneath the Tibetan Plateau constrained by regional Lg-wave Q tomography. Earth Planet Sci Lett 383:113–122
  • 72. Zheng G, Wang H, Wright TJ, Lou YD, Zhang R, Zhang WX, Shi C, Huang JF, Wei N (2017) Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements. J Geophys Res: Solid Earth 122(11):9290–9312
  • 73. Zhou MF, Robinson PT, Wang CY, Zhao JH, Yan DP, Gao JF, Malpas J (2012) Heterogeneous mantle source and magma differentiation of quaternary arc-like volcanic rocks from Tengchong, SE margin of the Tibetan Plateau. Contrib Miner Petrol 163(5):841–860
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2a7402b-78e1-4f29-b5e1-64fd1771bf29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.