PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinetic Model of Wastewater Treatment in Horizontal Flow Flotation Tank

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The flotation wastewater treatment was considered in the paper. The main stages and parameters of flotation process were pointed out. The multistage flotation model considering all main stages of flotation process is presented. However, its main disadvantage is that for the definition of constant characterizing the bubble-particle aggregate formation, the constant value of superficial gas velocity was used, which is incorrect for horizontal flow flotation tank. The modified multistage flotation model with superficial gas velocity as the function of time was proposed. The experiments were carried out on a laboratory setup with a pneumohydraulic system of aeration in order to verify the proposed model. The comparison of experimental and theoretical results proved the importance of superficial gas velocity change consideration.
Rocznik
Strony
190--196
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
  • Ecology and industrial safety department, Bauman Moscow State Technical University (BMSTU), build. 1, 5, 2-nd Baumanskaya St., 105005, Moscow, Russian Federation
  • Ecology and industrial safety department, Bauman Moscow State Technical University (BMSTU), build. 1, 5, 2-nd Baumanskaya St., 105005, Moscow, Russian Federation
Bibliografia
  • 1. Antonova E. S., Sazonov D. V. 2019. Increasing wastewater treatment efficiency in phneumohydraulic flotators. Water and Ecology: problems and solutions, 1 (77), 3–9 (In Russian). doi: 10.23968/2305–3488.2019.24.1.3–9
  • 2. Brożek M. Młynarczykowska A. 2007. Analysis of kinetics models of batch flotation. Physicochemical Problems of Mineral Processing, 41, 51–65.
  • 3. Bu X., Xie G., Peng Y., Ge L., Ni C. 2017. Kinetics of flotation. Order of process, rate constant distribution and ultimate recovery. Physicochemical Problems of mineral processing, 53(1), 342–365. doi:10.5277/ppmp170128
  • 4. Cheng G., Shi C., Yan X., Zhang Z., Xu H., Lu Y. 2017. A study of bubble-particle interactions in a column flotation process. Physicochemical Problems of Mineral Processing, 53(1), 17–33. doi: 10.5277/ppmp170102
  • 5. Eskin A. 2017 Dissolved Air Flotation with Saturation of Liquid in Spray-Type Saturator. IOP Conf. Ser.: Mater. Sci. Eng. 262 012222. doi:10.1088/1757–899X/262/1/012222
  • 6. Edzwald J. K. 2010. Dissolved air flotation and me. Water research, 44(7), 2077–2106. doi:10.1016/j.watres.2009.12.040
  • 7. Gurung A., Dahl O., Jansson K. 2016. The fundamental phenomena of nanobubbles and their behavior in wastewater treatment technologies. Geosystem Engineering, 19(3), 133–142. doi: 10.1080/12269328.2016.1153987
  • 8. Guerrero-Pérez J. S., Barraza-Burgos, J. M. 2017. A new mathematical model for coal flotation kinetics. Dyna, 84(203), 143–149. doi: 10.15446/dyna.v84n203.62593
  • 9. Haarhoff J., Edzwald J. K. 2004. Dissolved air flotation modelling: insights and shortcomings. Journal of Water Supply: Research and Technology-AQUA, 53(3), 127–150.
  • 10. Kouachi S., Bouhenguel M., Amirech A., Bouchemma A. 2010. Yoon–Luttrell collision and attachment models analysis in flotation and their application on general flotation kinetic model. Desalination, 264(3), 228–235. doi:10.1016/j.desal.2010.06.057
  • 11. Kracht W., Vallebuona G., Casali A. 2005. Rate constant modelling for batch flotation, as a function of gas dispersion properties. Minerals Engineering, 18(11), 1067–1076.
  • 12. Ksenofontov B. S. 2010. Flotatsionnaya obrabotka vody, otkhodov i pochvy [Flotation Treatment of Water, Waste and Soil]. Novye Tekhnologii Publ., Moscow (In Russian).
  • 13. Oliveira C., Rodrigues R. T., Rubio J. 2010. A new technique for characterizing aerated flocs in a flocculation–microbubble flotation system. International Journal of Mineral Processing, 96(1–4), 36–44. doi:10.1016/j.minpro.2010.07.001
  • 14. Polat M., Chander, S. 2000. First-order flotation kinetics models and methods for estimation of the true distribution of flotation rate constants. International Journal of Mineral Processing, 58(1–4), 145–166.
  • 15. Prakash R., Majumder S. K., Singh A. 2018. Flotation technique: Its mechanisms and design parameters. Chemical Engineering and Processing-Process Intensification, 127, 249–270. doi: 10.1016/j.cep.2018.03.029
  • 16. Saththasivam J., Loganathan K., Sarp S. 2016. An overview of oil–water separation using gas flotation systems. Chemosphere, 144, 671–680. doi: doi.org/10.1016/j.chemosphere.2015.08.087
  • 17. Sazonov D. V. 2017. Influence of the pump type on the parameters of the pneumatic-hydraulic aeration system in flotation apparatus. Water supply and sanitary technique, 10, 40–45 (In Russian).
  • 18. Shahbazi B., Rezai B., Koleini S. M. J., Noparast M. 2013. The effect of bubble surface area flux on flotation efficiency of pyrite particles. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 32(2), 109–118.
  • 19. Vazirizadeh A. 2015. The relationship between hydrodynamic variables and particle size distribution in flotation. Ph.D. Thesis, Université Laval, Quebec.
  • 20. Yianatos J. B. 2007. Fluid flow and kinetic modelling in flotation related processes: Columns and mechanically agitated cells-a review. Chemical Engineering Research and Design. 85(A12),1591–1603. doi: 10.1016/s0263–8762(07)73204–5
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2a6eea3-6947-41cd-ac42-3b6e5cb20048
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.