PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Using EBG to enhance directivity, efficiency, and back lobe reduction of a microstrip patch antenna

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wykorzystanie EBG do zwiększenia kierunkowości, wydajności i redukcji tylnego płata anteny z mikropaskami
Języki publikacji
EN
Abstrakty
EN
In this work, a compact rectangular patch antenna and 2×2 microstrip antenna array with EBG structures have been integrated. Two types of EBGs were utalized, such as a mushroom-like EBG and a new designe of Triple Side Slotted of EBG (TSSEBG). These suggested EBGs have been located on the top antenna surface for eliminating unwanted surface waves. The mitigation in vias number is effective method for decreasing the fabrication process complexity, where it decreased from 164 to 46 and from 392 to 92 in case of used TSSBG instead of EBG in the rectangular antenna and array antenna respectively. The single antenna withTSSEBG demonstrate 10.5 dBi directivity, 93% efficiency, and −21 dB side lobe. At 6 GHz, the TSSEBG antenna array has a good improvement in directivity (15.5 dBi), side lobe (−28.5 dB), and efficiency (88%).
PL
W tej pracy zintegrowano kompaktową prostokątną antenę płatkową i układ anten mikropaskowych 2 × 2 ze strukturami EBG. Wykorzystano dwa typy EBG, takie jak grzybopodobny EBG i nowy projekt Triple Side Slotted of EBG (TSSEBG). Te sugerowane EBG zostały umieszczone na górnej powierzchni anteny w celu wyeliminowania niepożądanych fal powierzchniowych. Zmniejszenie liczby przelotek jest skuteczną metodą na zmniejszenie złożoności procesu produkcyjnego, gdzie zmniejszyła się z 164 do 46 iz 392 do 92 w przypadku zastosowanego TSSBG zamiast EBG odpowiednio w antenie prostokątnej i antenie matrycowej. Pojedyncza antena z TSSEBG wykazuje kierunkowość 10,5 dBi, wydajność 93% i listwę boczną −21 dB. Przy 6 GHz, zestaw anten TSSEBG ma dobrą poprawę kierunkowości (15,5 dBi), listka bocznego (-28,5 dB) i wydajności (88%).
Rocznik
Strony
56--59
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Bibliografia
  • [1] Abdulhameed M. K., et al. Radiation control of microstrip patch antenna by using electromagnetic band gap. International Journal of Electronics and Communications (AEÜ). 2019; 110 (2019) 152835: 1-11.
  • [2] Sarker, R., M. Islam, T. Alam, and G. C. M. Hossam. Side Lobe Level Reduction in Antenna Array Using Weighting Function. Int. Conf. Electr. Eng. Inf. Commun. Technol. 2014; 23(4): 403–415.
  • [3] Alexópoulos, N. G. and D. R. Jackson. Fundamental Superstrate (Cover) Effects on Printed Circuit Antennas. IEEE Trans. Antennas Propag. 1984; 32(8): 807–816.
  • [4] Jackson, D. R. J. T., Williams, A. K. Bhattacharyya, R. L. Smith, S. J. Buchheit, and S. A. Long. Microstrip Patch Designs That Do Not Excite Surface Waves. IEEE Trans. Antennas Propag. 1993; 41(8): 1026–1037.
  • [5] Yook J.G. and B. Katehi. Micromachined microstrip patch antenna with controlled mutual coupling and surface waves. IEEE Trans. Antennas Propag. 2001; 49(9): 1282–1289.
  • [6] M. K. Mohsen, M. S. M. Isa, T. A. Rahman, M. K. Abdulhameed, A. A. M. Isa, and M. S. I. M. Z. S. Saat, “Novel Design and Implementation of MIMO Antenna for LTE Application,” J. Telecommun. Electron. Comput. Eng., vol. 10, no. 2, pp. 43–49, 2018.
  • [7] M. K. Mohsen et al., “The Fundamental of Leaky Wave Antenna,” J. Telecommun. Electron. Comput. Eng., vol. 10, no. 1, pp. 119–127, 2018.
  • [8] Abdulhameed MK, Isa MSM, Ibrahim IM, Zin MSIM, Zakaria Z, Mohsin MK. Review of Radiation Pattern Control Characteristics for The Microstrip Antenna Based On Electromagnetic Band Gap (EBG ). J Telecommun Electron Comput Eng. 2018; 10(3): 129–40.
  • [9] Islam M. T. and M. S. Alam. Compact Ebg Structure for Alleviating Mutual Coupling Between Patch Antenna Array Elements. Prog. Electromagn. Res. 2013; 13(7): 425–438.
  • [10] Abdulhameed MK, Isa MSM, Z.Zakaria IMI, Mohsin MK. Controlling The Radiation Pattern of Patch Antenna Using Switchable EBG. TELKOMNIKA Telecommunication Comput Electron Control. 2018; 16(5): 2014–22.
  • [11] Zong B., G. Wang, C. Zhou, and Y. Wang. Compact Low-Pro fi le Dual-Band Patch Antenna Using Novel TL-MTM Structures. IEEE ANTENNAS Wirel. Propag. Lett. 2015; 14(3):567–570.
  • [12] Abdulhameed MK, Isa MSM, Z.Zakaria, K.Mohsin M, Attiah ML. Mushroom-Like EBG to Improve Patch Antenna Performance For C-Band Satellite Application. Int J Electr Comput Eng. 2018; 8(5): 3875-3881.
  • [13] Abdulhameed MK, Isa MSM, Ibrahim IM, Mohsin MK. Improvement of Microstrip Antenna Performance on Thick and High Permittivity Substrate with Electromagnetic Band Gap. Jour Adv Res Dyn Control Syst. 2018; 10(4): 661–9.
  • [14] Mohsin MK , MSM Isa, AAM Isa, MK Abdulhameed, ML Attiah, AM Dinar. Enhancement of boresight radiation for leaky wave antenna array. TELKOMNIKA (Telecommunication Comput. Electron. Control. 2019; 17 (5), 2179-2185.
  • [15] Dinar AM, ASM Zain, F Salehuddin, MK Mohsen, ML Attiah. Performance analysis of high-k materials as stern layer in ionsensitive field effect transistor using commercial TCAD. TELKOMNIKA (Telecommunication Comput. Electron. Control. 2019; 17 (6), 1179-1185.
  • [16] Dinar AM, ASM Zain, F Salehuddin, MK Mohsen, ML Attiah. Impact of Gouy-Chapman-Stern model on conventional ISFET sensitivity and stability. TELKOMNIKA (Telecommunication Comput. Electron. Control. 2019; 17 (6).
  • [17] Muhannad K, Isa MSM, Ibrahim IM, Mohsin MK. Enhanced performance of compact 2× 2 antenna array with electromagnetic band‐gap. Microw Opt Technol Lett. 2020; 62 (2): 875-886.
  • [18] Jin N., A. Yu, and X. Zhang. An Enhanced 2x2 Antenna Array Based on A duumbbell EBG Structure. Microw Opt Technol Lett. 2003; 39 (5): 395–399.
  • [19] Jiao T., T. Jiang, Y. Li, and X. Mao. A low mutual coupling MIMO antenna array with periodic crossing electromagnetic band gap. Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL); 2017, pp. 279–283.
  • [20] Elsheakh D. and M. F. Iskander, E. A. A. and H. A. E. Hawaii. Microstrip array antenna with new 2D-Electromagnetic band gap structure shapes to reduce harmonics and mutual coupling. 5
  • [ 2010; 12(5): 203–213.
  • [21] Abdulhameed MK, Isa MSM, Z.Zakaria, K.Mohsin M, Attiah ML. Side lobe reduction in array antenna by using novel design of EBG. Int J Electr Comput Eng. 2020; 10(1): 308-315.
  • [22]. Karaaslan M., E. Unal, E. Tetik, K. Delihacioglu, F. Karadag, and F. Dincer. Low profile antenna radiation enhancement with novel electromagnetic band gap structures. IET Microwaves, Antennas Propag. 2013; 7 (3):215–221.
  • [23] Abdulhameed M. K., M. S. M. Isa, Z. Zakaria, I. M. Ibrahim, and M. K. Mohsin. Radiation Pattern Control of Microstrip Antenna in Elevation and Azimuth Planes Using EBG and Pin Diode. Int. J. Electr. Comput. Eng. 2019; 9 (1): 332-340.
  • [24] Abdulhameed M. K., M. S. M. Isa, Z. Zakaria, I. M. Ibrahim, M. K. Mohsen, and A. M. Dinar. Novel design of triple bands EBG. TELKOMNIKA (Telecommunication Comput. Electron. Control. 2019; 17 (4); 1683-1691.
  • [25] M. K. Abdulhameed, M. S. M. Isa, I. M. Ibrahim, M. S. I. M. Zin, Z. Zakaria, and M. K. Mohsin, “Review of Radiation Pattern Control Characteristics for The Microstrip Antenna Based On Electromagnetic Band Gap ( EBG ),” vol. 10, no. 3, pp. 129– 140, 1843.
  • [26] M. K. Mohsen, M. S. M. Isaa, A. A. M. Isa, M. K. Abdulhameed, and M. L. Attiah, “Novel design of triple band controls the radiation pattern for half width microstrip leaky wave antenna,” J. Adv. Res. Dyn. Control Syst., vol. 10, no. 4 Special Issue, pp. 670–679, 2018.
  • [27] M. L. Attiah, A. A. M. Isa, Z. Zakaria, M. K. Abdulhameed, M. K. Mohsen, and A. M. Dinar, “Independence and Fairness Analysis of 5G mmWave Operators Utilizing Spectrum Sharing Approach,” vol. 2019, 2019.
  • [28] M. K. Mohsen, M. S. M. Isa, Z. Zakaria, A. A. M. Isa, and M. K. Abdulhameed, “Electronically controlled radiation pattern leaky wave antenna array for ( C band ) application,” vol. 17, no. 2, pp. 573–579, 2019.
  • [29] M. K. Mohsen, M. S. M. Isa, A. A. M. Isa, and M. K. Abdulhameed, “Enhancement of boresight radiation for leaky wave antenna array,” TELKOMNIKA, vol. 17, no. 5, pp. 2179– 2185, 2019.
  • [30] J. S. Kasim, M. S. M. Isa, Z. Zakaria, M. I. Hussein, and M. K. Mohsen, “Radiation beam scanning for leaky wave antenna by using slots,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 18, no. 3, pp. 1237–1242, 2020.
  • [31] J. S. Kasim, M. S. M. Isa, Z. Zakaria, M. I. Hussein, and M. K. Mohsen, “Review on fixed-frequency beam steering for leaky wave antenna,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 17, no.
  • [32] Al-Gburi, Ahmed & Ibrahim, Imran & Zakaria, Zahriladha. (2020). A Miniature Raspberry Shaped UWB Monopole Antenna based on Microwave Imaging Scanning Technique for Kidney Stone Early Detection. International Journal of Psychosocial Rehabilitation.v. 24.
  • [33] Al-Gburi, Ahmed & Ibrahim, Imran & Zakaria, Zahriladha. (2017). Band-notch effect of U-shaped split ring resonator structure at ultra wide-band monopole antenna. International Journal of Applied Engineering Research. 12. 4782-4789.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2a5834a-52c1-4bea-bcdb-0ef3371796fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.