PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High-resolution Campanian-Maastrichtian carbon and oxygen stable isotopes of bulk-rock and skeletal components: palaeoceanographic and palaeoenviron-mental implications for the Boreal shelf sea

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A high-resolution latest Early Campanian to Early Maastrichtian carbon and oxygen stable isotope record from the northern German Boreal shelf sea based on 537 analyses of co-occurring belemnites, brachiopods, inoceramids, oysters, and bulk rock samples is presented. All samples are precisely related to their stratigraphic, systematic and facies backgrounds and form an integrated, nearly 10-myr-long dataset with considerable palaeoenvironmental and palaeoceanographical implications. Petrographic studies indicate that low-magnesium calcitic coccoliths and calcispheres (i.e., planktic carbonate) predominate the bulk-rock data (marl-limestone rhythmites and chalks), thus representing a sea-surface water signal, and that only minor diagenetic alteration of the carbonate muds took place. Based on TL and CL microscopy, the investigated belemnites are extraordinarily well preserved, which may in part be explained by their early diagenetic surficial silicification (container effect), while the other macroinvertebrate groups are all less well preserved. The (plankton-dominated) δ13C values of the marl-limestone rhythmites and chalks (+1.1 to +2.5‰), recording a surface water signal, compare well with the δ13C data of inoceramids while δ13C brach.values (+1.5 to +3.0‰) are heavier than the bulk rock data. The large variation in the δ13Cbel. (-0.1 to +3.6‰) is attributed to isotopic disequilibrium of the biogenic carbonate formed by the belemnite animal. The bulk rock δ18O values show a remarkable low scatter, supporting petrographic observation of only minor diagenetic stabilisation/cementation, and can be approximated with northern German shelf sea-surface temperatures of ca. 20°C for the Late Campanian (ca. -2‰ δ18O), being slightly cooler during the Early Maastrichtian. The δ18O values of the belemnite rostra are even less variable and quite rich in heavier 18O (-0.7 to +0.6 with a mean of -0.1‰ δ18Obel.) in comparison to bulk rock and other skeletal components. Based on their excellent microstructural preservation and non-luminescence, we conclude that the belemnite rostra are diagenetically unaltered and have preserved the primary δ18O signal of ambient seawater (12±2°C). In the absence of any indication for migration from cooler water masses and evidence for authochtonous populations we assume that the belemnites of the genera Belemnitella and Belemnella lived as nektobenthos near the sea-floor and thus record the temperature of the bottom mixed layer of the seasonally weakly stratified north German shelf sea at water depths of 100 to 150 m; the temperature gradient was thus 12.5–18.75 m/1°C. A conspicuous latest Campanian cooling event is evident in both sea-surface and bottom-water temperatures. The δ18O values of nearly all investigated benthic fossils lie between the isotope values of pristine belemnites and bulk rock, and, therefore, should be used for palaeotemperature reconstructions only with great care.
Rocznik
Strony
47--74
Opis fizyczny
Bibliogr. 127 poz., rys., wykr.
Twórcy
autor
  • Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Königsbrücker Landstr. 159, D–01109 Dresden, Germany.
autor
  • Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Königsbrücker Landstr. 159, D–01109 Dresden, Germany.
Bibliografia
  • 1. Aberhan, M. 1994. Guild-structure and evolution of Mesozoic benthic shelf communities. Palaios, 9, 516-545.
  • 2. Adlis, D.S., Grossman, E.L., Yancey, T.E. and McLerran, R.D. 1988. Isotope stratigraphy and paleodepth changes of Pennsylvanian cyclical sedimentary deposits. Palaios, 3, 487-506.
  • 3. Anderson, T.F. and Arthur, M.A. 1983. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. In: Arthur, M.A., Anderson, T.F., Kaplan, I.R., Veizer, J. and Land, L. (Eds), Stable isotopes in sedimentary geology. Society of Economic Paleontologists and Mineralogists, Short Course, 10, 1-151.
  • 4. Auclair, A.-C., Joachimski, M.M. and Lécuyer, C. 2003. Deciphering kinetic, metabolic and environmental controls on stable isotope fractionations between seawater and the shell of Terebratalia transversa (Brachiopoda). Chemical Geology, 202, 59-78.
  • 5. Baldschuhn, R., Best, G. and Kockel, F. 1991. Inversion tectonics in the north-west German basin. In: Spencer, A.M. (Ed.), Generation, accumulation and production of Europe’s hydrocarbons. European Association of Petroleum Geoscientists, 1, 149–159. University Press; Oxford.
  • 6. Baldschuhn, R., Binot, F., Fleig, S. and Kockel, F. 2001. Geotektonischer Atlas von Nordwestdeutschland und dem deutschen Nordsee-Sektor. Geologisches Jahrbuch, A 153(3 CD ROMs), 1-95.
  • 7. Bandel, K., Engeser, T. and Reitner, J. 1984. Die Embryonal-Entwicklung von Hibolites (Belemnitida, Cephalopoda). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 167, 275-303.
  • 8. Barrera, E. and Savin, S.M. 1999. Evolution of late Campanian–Maastrichtian marine climates and oceans. In: Barrera, E. and Johnson, C. (Eds), Evolution of the Cretaceous ocean–climate system. Geological Society of America Special Papers, 332, 245-282.
  • 9. Brand, U. and Veizer, J. 1980. Chemical diagenesis of a multicomponent carbonate system 1: Trace elements. Journal of Sedimentary Petrology, 50, 1219-1236.
  • 10. Broecker, W.S. and Peng, T.-H. 1982. Tracers in the Sea. 690 pp. Lamont-Doherty Geological Observatory, Columbia University; Palisades, NY.
  • 11. Carpenter, S.J. and Lohmann, K.C. 1995. δ18O and δ13C values of modern brachiopod shells. Geochimica et Cosmochimica Acta, 59, 3749-3764.
  • 12. Christensen, W.K. 1975. Upper Cretaceous belemnites from the Kristianstad area in Scania. Fossils and Strata, 7, 1-69.
  • 13. Christensen, W.K. 1976. Palaeobiogeography of Late Cretaceous belemnites of Europe. Paläontologische Zeitschrift, 50, 113-129.
  • 14. Christensen, W.K. 1990a. Upper Cretaceous belemnite stratigraphy of Europe. Cretaceous Research, 11, 371-386.
  • 15. Christensen, W.K. 1990b. Actinocamax primus Arkhangelsky (Belemnitellidae, Upper Cretaceous): Biometry, comparison and biostratigraphy. Paläontologische Zeitschrift, 64, 75-90.
  • 16. Christensen, W.K. 1996. A review of the Upper Campanian and Maastrichtian belemnite stratigraphy of Europe. Cretaceous Research, 17, 751-766.
  • 17. Christensen, W.K. 1997. Palaeobiogeography and migration in the Late Cretaceous belemnite family Belemnitellidae. Acta Palaeontologica Polonica, 42, 457-495.
  • 18. Doyle, P. and Howlett, P. 1989. Antarctic belemnite biogeography and the break-up of Gondwana. In: Crame, J.A. (Ed.), Origins and evolution of the Antarctic biota. Geological Society London, Special Publication, 47, 167-182.
  • 19. Doyle P. and MacDonald, D.L.M. 1993. Belemnite battlefields. Lethaia, 26, 65-80.
  • 20. Eichler, R. and Ristedt, H. 1966. Isotopic evidence on the early life history of Nautilus pompilius (Lin ne). Science, 153(3737), 734-736.
  • 21. Elorza, J., García-Garmilla, F. and Jagt, J.W.M. 1997. Diagenesis-related differences in isotopic and elemental composition of Late Campanian and Early Maastrichtian inoceramids and belemnites from NE Belgium: palaeoenvironmental implications. Geologie en Mijnbouw, 75, 349-360.
  • 22. Elorza, J., Gómez Alday, J.J. and Olivero, E.B. 2001. Environmental stress and diagenetic modifications in inoceramids and belemnites from the Upper Cretaceous James Ross Basin, Antarctica. Facies, 44, 227-242.
  • 23. Engelke, J., Esser, K.J.K., Linnert, C., Mutterlose, J. and Wilmsen, M. 2016. The benthic macrofauna from the lower Maastrichtian chalk of Kronsmoor (northern Germany, Saturn quarry): taxonomic outline and palaeoecologic implications. Acta Geologica Polonica, 66, 671-694.
  • 24. Ernst, G. and Schulz, M.-G. 1974. Stratigraphie und Fauna des Coniac und Santon im Schreibkreide-Richtprofil von Lägerdorf (Holstein). Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg 43, 5-60.
  • 25. Fisher, C.G. and Arthur, M.A. 2002. Water mass characteristics in the Cenomanian US Western Interior seaway as indicated by stable isotopes of calcareous organisms. Palaeogeography, Palaeoclimatology, Palaeoecology, 188, 189-213.
  • 26. Friedrich, O., Herrle, J.O. and Hemleben, C. 2005. Climatic changes in the Late Campanian–Early Maastrichtian: micropaleontological and stable isotopic evidence from an epicontinental sea. Journal of Foraminiferal Research, 35, 228-247.
  • 27. Gale, A.S. and Christensen, W.K. 1996. Occurrence of the belemnite Actinocamax plenus in the Cenomanian of SE France and its significance. Bulletin of the Geological Society of Denmark, 43, 68-77.
  • 28. Gillikin, D.P., Lorrain, A., Bouillon, S., Willenz, P. and Dehairs, F. 2006. Stable carbon isotopic composition of Mytilus edulis shells: relation to metabolism, salinity, δ13CDIC and phytoplankton. Organic Geochemistry, 37, 1371-1382.
  • 29. Godwin, M. 1998. Growth rings and population dynamics of Belemnitella in the Beeston Chalk, upper Campanian, Caistor St. Edmund, Norfolk. Bulletin of the Geological Society of Norfolk, 47, 3-18.
  • 30. Hoefs, J. 2004. Stable isotope geochemistry. 5th ed., 244 pp. Springer; Berlin, Heidelberg, New York.
  • 31. Hoffmann, R., Richter, D.K., Neuser, R.D., Jöns, N., Linzmeier, B.J., Lemanis, R.E., Fusseis F., Xiao, X. and Immenhauser, A. 2016: Evidence for a composite organic–inorganic fabric of belemnite rostra: Implications for palaeoceanography and palaeoecology. Sedimentary Geology, 341, 203-215.
  • 32. Huber, B.T. 1998. Tropical paradise at the Cretaceous poles? Science, 282, 2199-2200.
  • 33. Huber, B.T., Norris, R.D. and MacLeod, K.G. 2002. Deepsea palaeotemperature record of extreme warmth during the Cretaceous. Geology, 30, 123-126.
  • 34. Immenhauser, A., Holmden, C. and Patterson, W.P. 2008. Interpreting the carbon-isotope record of ancient shallow epeiric seas: Lessons from the Recent. In: Pratt, B. and Holmden, C. (Eds), Dynamics of epeiric seas. Geological Association of Canada, Special Paper, 48, 137-174.
  • 35. Immenhauser, A., Nagler, T.F., Steuber, T. and Hippler, D. 2005. A critical assessment of mollusk O-18/O-16, Mg/Ca, and Ca-44/Ca-40 ratios as proxies for Cretaceous seawater temperature seasonality. Palaeogeography, Palaeoclimatology, Palaeoecology, 215, 221-237.
  • 36. Jago, C.F. and Jones, S.E. 2002. Diagnostic criteria for reconstruction of tidal continental shelf regimes: changing the paradigm. Marine Geology, 191, 95-117.
  • 37. Jaritz, W. 1973. Zur Entstehung der Salzstrukturen Nord-westdeutschlands. Geologisches Jahrbuch, A 10, 1-77.
  • 38. Jeans, C.V., Dee, L., Hu, X.-F. and Mortimore, R.N. 2014. Regional hardening of Upper Cretaceous Chalk in eastern England, UK: trace element and stable isotope pattern in the Upper Cenomanian and Turonian Chalk and their significance. Acta Geologica Polonica, 64, 419-455.
  • 39. Jelby, M.E., Thibault, N., Surlyk, F., Ullmann, C.V., Harlou, R. and Korte, C. 2014. The lower Maastrichtian Hvidskud succession, Møns Klint, Denmark: calcareous nannofossil biostratigraphy, carbon isotope stratigraphy, and bulk and brachiopod oxygen isotopes. Bulletin of the Geological Society of Denmark, 62, 89-104.
  • 40. Jeletzky, J.A. 1941. Über die Systematik und die Phylogenie der Belemniten der Oberen Kreide. Doklady Akademii Nauk SSSR, 2, 23–30. [iIn Ukrainian and Germann]
  • 41. Jeletzky, J.A. 1949. Über den taxonomischen Wert einiger morphologische Elemente des Rostrums der belemnitellenartigen Formen (Familie Belemnitellidae Pavlow, 1913), sowie über die Gattung Belemnella (Nowak, 1913, subg.) Jeletzky, 1941, ihre Phylogenie und einige Vertreter. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Monatshefte, 9, 257-287.
  • 42. Jenkyns, H.C., Gale, A.S. and Corfield, R.M. 1994. Carbon- and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geological Magazine, 131, 1-34.
  • 43. Jenkyns, H.C., Forster, A., Schoutere, S. and Sinninghe Damsté, J.S. 2004. High temperatures in the Late Cretatceous Arctic Ocean. Nature, 432, 888-892.
  • 44. Jenkyns, H.C., Schouten-Huibers, L., Schouten, S. and Sinninghe Damsté, J.S. 2012. Warm Middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean. Climates of the Past, 8, 215-226.
  • 45. Jiménez-Berrocoso, A., Cruz Zuluaga, M. and Elorza, J. 2004. Minor- and trace element intra-shell variations in Santonian inoceramids (Basque-Cantabrian Basin, northern Spain): diagenetic and primary causes. Facies, 50, 35-60.
  • 46. Jiménez-Berrocoso, Á., Olivero, E.B. and Elorza, E. 2006. New petrographic and geochemical insights on diagenesis and palaeoenvironmental stress in Late Cretaceous inoceramid shells from the James Ross Basin, Antarctica. Antarctic Science, 18, 357-376.
  • 47. Klug, C., Schweigert, G., Fuchs, D. and Dietl, G. 2010. First record of a belemnite preserved with beak, arms and ink sac from the Nuspligen Lithographic Limestone (Kimmeridgian, SW Germany). Lethaia, 43, 445-456.
  • 48. Košťák, M. 2004. Cenomanian through the lowermost Coniacian Belemnitellidae Pavlow (Belemnitida, Coleoidea) of the East European Province. Geolines, 18, 59-109.
  • 49. Košťák, M., Cech, S., Ekrt, B., Mazuch, M., Wiese, F., Voigt, S. and Wood, C.J. 2004. Belemnites of the Bohemian Cretaceous Basin in a global context. Acta Geologica Polonica, 54, 511-533.
  • 50. Linnert, C., Engelke, J., Wilmsen, M. and Mutterlose, J. 2016. The impact of the Maastrichtian cooling on the marine nutrient regime – Evidence from mid-latitudinal calcareous nannofossils. Paleoceanography, 31, 694-714.
  • 51. Linnert, C., Robinson, S.A., Lees, J.A., Bown, P.R., Rodríguez, I.P., Petrizzo, M.R., Falzoni, F., Littler, K., Arz, J.A. and Russell, E.E. 2014. Evidence for global cooling in the Late Cretaceous. Nature Communications, 5, 4194.
  • 52. Machel, H.G., Mason, R.A., Mariano, A.N. and Mucci, A. 1991. Causes and measurements of luminescence in calcite and dolomite. In: Barker, C.E. and Kopp, O.C. (Eds), Luminescence microscopy and spectroscopy: qualitative and quantitative applications. Society of Economic Paleontologists and Mineralogists, Short Course, 25, 9-26.
  • 53. Marshall, J.D. 1992. Climatic and oceanographic isotope signals from the carbonate rock record and their preservation. Geological Magazine, 129, 143-160.
  • 54. Maystrenko, Y., Bayer, U. and Scheck-Wenderoth, M. 2005. The Glückstadt Graben, a sedimentary record between the North and Baltic Sea in north Central Europe. Tectonophysics, 397, 113-126.
  • 55. McArthur, J.M., Mutterlose, J., Price, G.D., Rawson, P.F., Ruffell, A. and Thirwall, M.F. 2004. Belemnites of Valanginian, Hauterivian and Barremian age: Sr-isotope stratigraphy, composition (87Sr/86Sr, δ13C, δ18O, Na, Sr, Mg), and palaeo-oceanography. Palaeogeography, Palaeoclimatology, Palaeoecology, 202, 253-272.
  • 56. McConnaughey, T.H. 1989a. 13C and 18O isotopic disequilibrium in biological carbonates. I. Patterns. Geochimica et Cosmochimica Acta, 53, 151-162.
  • 57. McConnaughey, T.H. 1989b. 13C and 18O isotopic disequilibrium in biological carbonates. II. In vitro simulation of kinetic isotope effects. Geochimica et Cosmochimica Acta, 53, 163-171.
  • 58. McConnaughey, T.H. and Gillikin, D.P. 2008. Carbon isotopes in mollusk shell carbonates. Geo-Marine Letters, 28, 287-299.
  • 59. McConnaughey, T.A., Burdett, J., Whelan, J.F. and Paull, C.K. 1997. Carbon isotopes in biological carbonates; respiration and photosynthesis. Geochimica et Cosmochimica Acta, 61, 611-622 .
  • 60. Miller, K.G., Barrera, E., Olsson, R.K., Sugarman, P.J. and Savin, S.M. 1999. Does ice drive early Maastrichtian eustasy? Geology, 27, 783-786.
  • 61. Mitchell, S.F. 2005. Eight belemnite biohorizons in the Cenomanian of northwest Europe and their importance. Geological Journal, 40, 363-382.
  • 62. Monks, N., Hardwick, J.D. and Gale, A.S. 1996. The function of the belemnite guard. Paläontologische Zeitschrift, 70, 425-431.
  • 63. Morrison, J.O. and Brand U. 1986. Geochemistry of Recent marine invertebrates. Geosciences of Canada, 13, 237-254.
  • 64. Moriya, K., Nishi, H., Kawahata, H., Tanabe, K. and Takayanagi, Y. 2003. Demersal habitat of Late Cretaceous ammonoids: Evidence from oxygen isotopes for the Campanian (Late Cretaceous) northwestern Pacific thermal structure. Geology, 31, 167-170.
  • 65. Müller-Stoll, H. 1936. Beiträge zur Anatomie der Belemnoidea. Nova Acta Leopoldina, Neue Serie, 4, 159-226.
  • 66. Nerot, C., Lorrain, A., Grall, J., Gillikin, D.P., Munaron, J.-M., Le Bris, H. and Paulet, Y.-M. 2012. Stable isotope variations in benthic filter feeders across a large depth gradient on the continental shelf. Estuarine, Coastal and Shelf Science, 96, 228-235.
  • 67. Neugebauer, J. 1974. Some aspects of cementation in chalk. Special Publications of the International Association of Sedimentologists, 1, 149-176.
  • 68. Niebuhr, B. 1995. Fazies-Differenzierungen und ihre Steuerungsfaktoren in der höheren Oberkreide von S-Niedersachsen/ Sachsen-Anhalt (N-Deutschland). Berliner Geowissenschaftliche Abhandlungen, A 174, 1-131.
  • 69. Niebuhr, B. 2005. Geochemistry and time-series analyses of orbitally forced Upper Cretaceous marl-limestone rhythmites (Lehrte West Syncline, northern Germany). Geological Magazine, 142, 31-55.
  • 70. Niebuhr, B. 2006. Multistratigraphische Gliederung der norddeutschen Schreibkreide (Coniac bis Maastricht), Korrelation von Aufschlüssen und Bohrungen. Zeitschrift der deutschen Gesellschaft für Geowissenschaften, 157, 245-262.
  • 71. Niebuhr, B. and Joachimski, M.M. 2002. Stable isotope and trace element geochemistry of Upper Cretaceous carbonates and belemnite rostra (Middle Campanian, north Germany). Geobios, 35, 51-64.
  • 72. Niebuhr, B., Hampton, M.J., Gallagher, L.T. and Remin, Z. 2011. Integrated stratigraphy of the Kronsmoor section (northern Germany), a reference point for the base of the Maastrichtian in the Boreal Realm. Acta Geologica Polonica, 61, 193-214.
  • 73. O’Dor, R.K. and Webber, D.M. 1986. The constraints on cephalopods: why squids aren’t fish. Canadian Journal of Zoology, 64, 1591-1605.
  • 74. Ogg, J.G., Hinnov, L.A. 2012. Cretaceous. In: Gradstein, F.M., Ogg, J.G., Schmitz, M., Ogg, G.M. (Eds), The geologic time scale 2012, Volume 2, 793-853. Elsevier; Amsterdam.
  • 75. Parkinson, D., Curry, G.B., Cusack, M. and Fallick, A.E. 2005. Shell structure, patterns and trends of oxygen and carbon stable isotopes in modern brachiopod shells. Chemical Geology, 219, 193-235.
  • 76. Philip, J. and Floquet, M. 2000a. Map 15 - Early Campanian (83–80.5 Ma). In: Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Biju-Duval, B., Brunet, M.F., Cadet, J.P., Crasquin, S. and Sandulescu, M. (Eds), Atlas Peri-Tethys palaeogeographical maps. 137-144. CCGM/CGMW; Paris.
  • 77. Philip, J. and Floquet, M. 2000b. Map 16 - Late Maastrichtian (69.5-65 Ma). In: Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Biju-Duval, B., Brunet, M.F., Cadet, J.P., Crasquin, S. and Sandulescu, M. (Eds), Atlas Peri-Tethys palaeogeographical maps. 145-152. CCGM/CGMW; Paris.
  • 78. Picard, S., Garcia, J.-P., Lécuyer, C., Sheppard, S.M.F., Cappetta, H. and Emig, C.C. 1998. δ18O values of coexisting brachiopods and fish: Temperature differences and estimates of paleo-water depths. Geology, 26, 975-978.
  • 79. Pirrie, D. and Marshall, J.D. 1990. Diagenesis of Inoceramus and Late Cretaceous palaeoenvironmental geochemistry: a case study from James Ross Island, Antarctica. Palaios, 5, 336-345.
  • 80. Podlaha, O.G., Mutterlose, J. and Veizer J. 1998. Preservation of δ18O and δ13C in belemnite rostra from the Jurassic/Early Cretaceous successions. American Journal of Science, 298, 324-347.
  • 81. Pożaryska, K. 1952. The sedimentological problems of Upper Maestrichtian and Danian of the Pulawy Environment (Middle Vistula). Biuletyn Państwowego Instytutu Geologicznego, 81, 1-104.
  • 82. Price, G.D., Fözy, I., Janssen, N.M.M. and Pálfy, J. 2011. Late Valanginian–Barremian (Early Cretaceous) palaeotemperatures inferred from belemnite stable isotope and Mg/Ca ratios from Bersek Quarry (Gerecse Mountains,Transdanubian Range, Hungary). Palaeogeography, Palaeoclimatology, Palaeoecology, 305, 1-9.
  • 83. Reitner, J. and Urlichs, M. 1983. Echte Weichteilbelemniten aus dem Untertoarcium (Posidonienschiefer) Südwestdeutschlands. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 165, 450-465.
  • 84. Remin, Z. 2012. The Belemnella stratigraphy of the Campanian–Maastrichtian boundary; a new methodological and taxonomic approach. Acta Geologica Polonica, 62, 495-533.
  • 85. Rexfort, A. and Mutterlose, J. 2006. Stable isotope records from Sepia officinalis - a key to understanding the ecology of belemnites? Earth and Planetary Science Letters, 247, 212-221.
  • 86.Rexfort, A. and Mutterlose, J. 2009. The role of biogeography and ecology on the isotope signature of cuttlefishes (Cephalopoda, Sepiidae) and the impact on belemnite studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 284, 153-163.
  • 87. Riboulleau, A., Baudin, F., Daux, V., Hantzpergue, P., Renard, M. and Zakharov, V. 1998. Sea surface paleotemperature evolution of the Russian platform during the Upper Jurassic. Comptes Rendus de l’Académie des Sciences, Série II, Fascicule A - Sciences de la Terre et des Planètes, 326, 239-246.
  • 88. Riegraf, W. and Hauff, R. 1983. Belemniten mit Weichkörper, Fangarmen und Gladius aus dem Untertoarcium (Posidonienschiefer) und Unteraalenium (Opalinuston) Südwestdeutschlands. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 165, 466-483.
  • 89. Sælen, G. 1989. Diagenesis and construction of the belemnite rostrum. Palaeontology, 32, 765-798.
  • 90. Savin, S.M. 1977. The history of the Earth’s surface temperature during the past 100 million years. Annual Review of Earth and Planetary Sciences, 5, 319-355.
  • 91. Schönfeld, J. and Burnett, J. 1991. Biostratigraphical correlation of the Campanian–Maastrichtian boundary: Lägerdorf–Hemmoor (northwestern Germany), DSDP Sites 548A, 549 and 551 (eastern North Atlantic) with palaeobiogeographical and palaeoceanographical implications. Geological Magazine, 128, 479-503.
  • 92. Schönfeld, J., Sirocko, F. and Jørgensen, N.O. 1990. Oxygen isotope composition of Upper Cretaceous chalk at Lägerdorf (NW Germany): its original environmental signal and palaeotemperature interpretation. Cretaceous Research, 12, 27-45.
  • 93. Schönfeld, J., Schulz, M.-G., Burnett, J., Gale, A.S., Hambach, U., Hansen, O.P., Kennedy, W.J., Rasmussen, H.W., Thirlwall, M.F. and Wray, D.S. 1996. New results on biostratigraphy, paleomagnetism, geochemistry and correlation from the standard section for the Upper Creteceous white chalk of northern Germany (Lägerdorf-Kronsmoor-Hemmoor). Mitteilungen aus dem Geologischen-Paläontologischen Institut der Universität Hamburg, 77, 545-575.
  • 94. Schootbrugge, B. van de, Föllmi, K.B., Bulot, L.G. and Burns, S.J. 2000. Paleoceanographic changes during the early Cretaceous (Valanginian-Hauterivian): evidence from oxygen and carbon stable isotopes. Earth and Planetary Science Letters, 181, 15-31.
  • 95. Schulz, M.-G. 1979. Morphometrisch-variationsstatistische Untersuchungen zur Phylogenie der Belemniten-Gattung Belemnella im Untermaastricht NW-Europas. Geologisches Jahrbuch, A 47, 3-157.
  • 96. Schulz, M.-G., Ernst, G. and Schmid, F. 1984. Coniacian to Maastrichtian stage boundaries in the standard section for the Upper Cretaceous white chalk of NW Germany (Lägerdorf–Kronsmoor–Hemmoor): definitions and proposals.Bulletin of the Geological Society Denmark, 33, 203-215.
  • 97. Sørensen, A.M., Ullmann, C.V., Thibault, N. and Korte, C. 2015. Geochemical signatures of the early Campanian belemnite Belemnellocamax mammillatus from the Kristianstad Basin in Scania, Sweden. Palaeogeography, Palaeoclimatology, Palaeoecology, 433, 191-200.
  • 98. Spaeth, C. 1975. Zur Frage der Schwimmverhältnisse bei Belemniten in Abhängigkeit vom Primärgefüge der Hartteile. Paläontologische Zeitschrift, 49, 321-331.
  • 99. Spaeth, C., Hoefs, J. and Vetter, U. 1971. Some aspects of isotopic composition of belemnites and related paleotemperatures. Geological Society of America, Bulletin, 82, 3139-3150.
  • 100. Stanley, S.M. 1970. Relation of shell form to life habits of the Bivalvia (Mollusca). Memoir of the Geological Society of America, 125, 1-296.
  • 101. Steuber, T. 1999. Isotopic and chemical intra-shell variations in low-Mg calcite of rudist bivalves (Mollusca-Hippuritacea): disequilibrium fractionations and late Cretaceous seasonality. International Journal of Earth Sciences, 88, 551-570.
  • 102. Stevens, G.R. 1964. Faunal realms in Jurassic and Cretaceous belemnites. Geological Magazine, 100, 481-497.
  • 103. Stevens, G.R. 1965. The Jurassic and Cretaceous belemnites of New Zealand and a review of the Jurassic and Cretaceous belemnites of the Indo-Pacific region. New Zealand Geological Survey Paleontological Bulletin, 36, 1-231.
  • 104. Stevens, G.R. 1973. Cretaceous belemnites. In: Hallam, A. (Ed.), Atlas of Palaeobiogeography. 421-429. Elsevier; Amsterdam.
  • 105. Stevens, K., Iba, Y., Suzuki, A and Mutterlose, J. 2015. Biological and environmental signals recorded in shells of Argonauta argo (Cephalopoda, Octobrachia) from the Sea of Japan. Marine Biology, DOI 10.1007/s00227-015-2750-5.
  • 106. Sujkowski, Z.B. 1930. Étude pétrographique du Crétacé de Pologne. La série de Lublin et sa comparaison avec la craire blanche. Bulletin du Service Géologique de Pologne, 6(3), 485-628.
  • 107. Thibault, N., Anderskouv, K., Bjerager, M., Boldreel, L.O., Jelby, M.E., Stemmerik, L. and Surlyk, F. 2015. Upper Campanian-Maastrichtian chronostratigraphy of the Skælskør-1 core, Denmark: correlation at the basinal and global scale and implications for changes in seasurface temperatures. Lethaia, 48, 549-560.
  • 108. Ullmann, C.V., Frei, R., Korte, C. and Hesselbo, S.P. 2015. Chemical and isotopic architecture of the belemnite rostrum. Geochimica et Cosmochimica Acta, 159, 231-243.
  • 109. Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G. and Strauss, H. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161, 59-88.
  • 110. Voigt, S. 1996. Paläobiogeographie oberkretazischer Inoceramen und Rudisten - ozeanographische und klimatische Konsequenzen einer neuen Paläogeographie. Münchner Geowissenschaftliche Abhandlungen, A 31, 1-101.
  • 111. Voigt, S. 2000. Stable oxygen and carbon isotopes from brachiopods of southern England and northwestern Germany: estimation of Upper Turonian palaeotemperatures. Geological Magazine, 137, 687-703.
  • 112. Voigt, S. and Hilbrecht, H. 1997. Late Cretaceous carbon isotope stratigraphy in Europe: Correlation and relations with sea level and sediment stability. Palaeogeography, Palaeoclimatology Palaeoecology, 134, 39-59.
  • 113.Voigt, S. and Wiese, F. 2000. Evidence for Late Cretaceous (Late Turonian) climate cooling from oxygen-isotope variations and palaeobiogeographic changes in Western and Central Europe. Journal of the Geological Society London, 157, 737-743.
  • 114. Voigt, S. and Schönfeld, J. 2010. Cyclostratigraphy of the reference section for the Cretaceous white chalk of northern Germany, Lägerdorf–Kronsmoor: A late Campanian–early Maastrichtian orbital time scale. Palaeogeography, Palaeoclimatology, Palaeoecology, 287, 67-80.
  • 115. Voigt, S., Gale, A.S. and Flögel, S. 2004. Midlatitude shelf seas in the Cenomanian–Turonian greenhouse world: Temperature evolution and North Atlantic circulation. Paleoceanography, 19, PA4020.
  • 116. Voigt, S., Wilmsen, M., Mortimore, R.N. and Voigt, T. 2003. Cenomanian palaeotemperatures derived from the oxygen isotopic composition of brachiopods and belemnites: evaluation of Cretaceous palaeotemperature proxies. International Journal of Earth Sciences (Geologische Rundschau), 92, 285-299.
  • 117. Voigt, S., Gale, A.S., Jung, C. and Jenkyns, H.C. 2012. Global correlation of Upper Campanian-Maastrichtian successions using carbon-isotope stratigraphy: development of a new Maastrichtian timescale. Newsletters on Stratigraphy, 45, 25-53.
  • 118. Wefer, G. 1985. Die Verteilung stabiler Isotope in Kalkschalen mariner Organismen. Geologisches Jahrbuch, A 82, 1-112 .
  • 119. Wefer, G. and Berger, W.H. 1991. Isotope paleontology: growth and composition of extant calcareous species. Marine Geology, 100, 207-248.
  • 120. Wefer, G., Berger, W.H., Bijma, J. and Fischer, G. 1999. Clues to ocean history: a brief overview of proxies. In: Fischer, G. and Wefer, G. (Eds), Use of Proxies in Paleoceanography - Examples from the South Atlantic, 1-68. Springer; Berlin, Heidelberg.
  • 121. Westermann, G.E.G. 1973. Strength of concave septa and depth limits of fossil cephalopods. Lethaia, 6, 383-403.
  • 122. Wierzbowski, H. and Joachimski, M.M. 2009. Stable isotopes, elemental distribution, and growth rings of belemnopsid belemnite rostra: proxies for belemnite life habitat. Palaios, 24, 377-386.
  • 123. Wiese, F. and Voigt, S. 2002. Late Cretaceous climate cooling in Europe: faunal response and possible causes. Geobios, 35, 65-77.
  • 124. Wiese, F., Košťák, M. and Wood, C.J. 2009. The Upper Cretaceous belemnite Preaactinocamax plenus (Blainville, 1827) from Lower Saxony (Upper Cenomanian, northwest Germany) and its distribution pattern in Europe. Paläontologische Zeitschrift, 83, 309-321.
  • 125. Wignall, P.B. and Hallam, A. 1991. Biofacies, stratigraphic distribution and depositional models of British onshore Jurassic black shales. In: Tyson, R.V. and Pearson, T.H. (Eds), Modern and ancient continental shelf anoxia. Geological Society London, Special Publication, 58, 291-309.
  • 126. Wilmsen, M., Niebuhr, B. and Hiss, M. 2005. The Cenomanian of northern Germany: facies analysis of a transgressive biosedimentary system. Facies, 51, 242-263.
  • 127. Wilmsen, M., Niebuhr, B., Wood, C.J. and Zawischa, D. 2007. Fauna and palaeoecology of the Middle Cenomanian Praeactinocamax primus Event at the type locality, Wunstorf quarry, northern Germany. Cretaceous Research, 28, 428-460.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2921091-6e9e-4e54-a411-b4c9565f2565
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.