Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Włókniny węglowe modyfikowane kwasem hialuronowym jako potencjalne podłoża w leczeniu ubytków kostno-chrzęstnych
Języki publikacji
Abstrakty
Damaged articular cartilage is known to have poor capacity for regeneration. Carbon fibres (CFs) have been widely investigated as cellular growth supports in cartilage tissue engineering. However, the long duration of the process of cartilage restoration limits the applicability of CFs implants in the treatment of cartilage tissue defects. Hyaluronic acid (HA) plays a key role in cartilage tissue development, repair and function. In the present study we focused on the in vitro and in vivo evaluation of two types of carbon nonwoven fabrics: HA modified and non-modified carbon nonwovens. The results of in vitro studies showed that cells attached well and retained their good viability in the carbon nonwoven matrix. The incorporation of hyaluronic acid resulted in the enhancement of cell proliferation. The results of in vivo studies showed a faster process of tissue regeneration in the case of HA modified carbon nonwovens. The results presented indicated that HA-modified carbon materials seem to be a suitable material for the treatment of osteochondral defects.
Uszkodzona chrząstka stawowa posiada słabą zdolność do regeneracji. Od lat prowadzone są badania nad zastosowaniem włókien węglowych w inżynierii tkankowej chrząstki, jako podłoży podtrzymujących wzrost komórek. Niestety długi proces odbudowy chrząstki w obrębie implantu węglowego ogranicza możliwość zastosowania włóknin węglowych w leczeniu ubytków chrzęstnych. Kwas hialuronowy (HA) jest składnikiem chrząstki odpowiedzialnym za jej właściwy rozwój oraz proces regeneracji. Modyfikacja włóknin kwasem hialuronowym może w korzystny sposób wpłynąć na własności biologiczne implantów węglowych. W pracy przedstawiono wyniki badań in vitro oraz in vivo nad włókninami węglowymi modyfikowanymi kwasem hialuronowym oraz nad włókninami niemodyfikowanymi. Z przeprowadzonych badań in vitro wynika, że modyfikacja włóknin węglowych kwasem hialuronowym powoduje wzrost proliferacji komórek hodowanych na tych materiałach. Natomiast wyniki badań in vivo wykazały, że proces regeneracji tkanki następuje szybciej w przypadku włóknin węglowych modyfikowanych kwasem hialuronowym niż w przypadku włóknin niemodyfikowanych. Przeprowadzone badania wskazują, że włóknina węglowa modyfikowana kwasem hialuronowym może być rozważana jako potencjalny materiał w leczeniu ubytków kostno-chrzęstnych.
Czasopismo
Rocznik
Strony
102--107
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- Institute of Textile Engineering and Polymer Materials, Faculty of Materials and Environment Science, University of Bielsko-Biala, Bielsko-Biała, Poland
autor
- Departament of Cytobiology, Collegium Medicum, UJ Jagiellonian University, Kraków, Poland
- Department of Biomaterials, Faculty of Materials Engineering and Ceramics, AGH – University of Science and Technology, Kraków, Poland
autor
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
autor
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
autor
- Department of Biomaterials, Faculty of Materials Engineering and Ceramics, AGH – University of Science and Technology, Kraków, Poland
Bibliografia
- 1. Suh JKF, Matthew HWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 2000; 21: 2589- 2598.
- 2. Kang JY, Chung CW, Sung JH at al. Novel porous matrix of hyaluronic acid for the three-dimensional culture of chondrocytes. International Journal of Pharmaceutics 2009; 369: 114-120.
- 3. Stoop R. Smart biomaterials for tissue engineering of cartilage. Injury, Int. J. Care Injured 2008; 39S1: 77-87.
- 4. Bonzani IC, George JH, Stevens MM. Novel materials for bone and cartilage regeneration. Current Opinion in Chemical Biology 2006; 10: 568-575.
- 5. Malheiro VN, Caridade SG, Alves NM, Mano JF. New poly(e-caprolactone)/chitosan blend fibers for tissue engineering applications. Acta Biomaterialia 2010; 6: 418-428.
- 6. Boguń M, Stodolak E, Menaszek E, Ścisłowska-Czarnecka A. Composites based on poly-e-caprolactone and calcium alginate fibres containing ceramic nanoadditives for use in regenerative medicine. Fibres & Textiles in Eastern Europe 2011; 19(6): 17-21.
- 7. Kuś WM, Górecki A, Strzelczyk P, Świąder P, Światkowski J. Carbon fibres as the alternative way in the treatment of cartilage defects of patellae. Engineering of Biomaterials 1998; 2: 8-11.
- 8. Kuś WM, Górecki A, Strzelczyk P, Świąder P. Carbon fiber scaffolds in the surgical treatment of cartilage lesions. Annals of Transplantation 1999; 4(3-4): 101-102.
- 9. Debnath UK, Fairclough JA, Williams RL. Long-term local effects of carbon fibre in the knee. Knee 2004; 11: 259-264.
- 10. Rajzer I, Menaszek E, Bacakova L, Rom M, Blazewicz M. In vitro and in vivo studies on biocompatibility of carbon fibres. Journal of Materials Science: Materials in Medicine 2010; 21: 2611-2622.
- 11. Rajzer I, Grzybowska-Pietras J, Janicki J. Fabrication of Bioactive Carbon Nonwovens for Bone Tissue Regeneration. Fibres & Textiles in Eastern Europe 2011; 19(1): 66-72.
- 12. Rajzer I, Kwiatkowski R, Piekarczyk W, Biniaś W, Janicki J. Carbon nanofibers produced from electrospun PAN/HAp precursors as scaffolds for bone tissue engineering. Materials Science and Engineering: C 2012; 32: 2562–2569.
- 13. Mikolajczyk T, Rabiej S, Szparaga G, Boguń M, Fraczek-Szczypta A, Błażewicz S. Strength Properties of Polyacrylonitrile (PAN) Fibres Modified with Carbon Nanotubes with Respect to Their Porous and Supramolecular Structure. Fibres & Textiles in Eastern Europe 2009; 17(6): 13-20.
- 14. Rajzer I, Rom M, Blazewicz M. Production of Carbon Fibers Modified with Ceramic Powders for Medical Applications. Fibers and Polymers 2010; 11(4): 615-624.
- 15. Patti AM, Gabriele A, Vulcano A, Ramieri MT, Della Rocca C. Effect of Hyaluronic acid on human chondrocyte cell lines from articular cartilage. Tissue & Cell 2001; 33(3): 294-300.
- 16. Mao JS, Liu HF, Yin YJ, Yao KD. The properties of chitosan-gelatin membranes and scaffolds modified with hyaluronic acid by different methods. Biomaterials 2003; 24: 1621-1629.
- 17. Yoo HS, Lee EA, Yoon JJ, Park TG. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials 2005; 26: 1925-1933.
- 18. Eng D, Caplan M, Preul M, Panitch A. Hyaluronan scaffolds: A balance between backbone functionalization and bioactivity. Acta Biomaterialia 2010; 6: 2407-2414.
- 19. Wang TW, Spector M. Development of hyaluronic acid-based scaffolds for brain tissue engineering. Acta Biomaterialia 2009; 5: 2371-2384.
- 20. Mason M, Vercruysse KP, Kirker KR, Frisch R, Marecak DM, Prestwich GD, Pitt WG. Attachment of hyaluronic acid to polypropylene, polystyrene and polytetrafluoroethylene. Biomaterials 2000; 21: 31-36.
- 21. Suh KY, Yang JM, Khademhosseini A, Berry D, Tran TN, Park H, Langer R. Characterization of chemisorbed hyaluronic acid directly immobilized on solid substrates. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2005; 72(2): 292-298.
- 22. Leach JB, Bivens KA, Patrick CW, Schmidt CE. Photocrosslinked Hyaluronic Acid Hydrogels: Natural, Biodegradable Tissue Engineering Scaffolds. Biotechnology and Bioengineering 2003; 82(5): 578-589.
- 23. Tan H, Chu CR, Payne KA, Marra KG. Injectable in situ forming biodegradable Chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 2009; 30: 2499-2506.
- 24. Temiz A, Kazikdas KC, Ergur B, Tugyan K, Bozok S, Kaya D, Guneli E. Esterified hyaluronic acid improves cartilage viability in experimental tracheal reconstruction with an auricular graft. Otolaryngology-Head and Neck Surgery 2010; 143(6): 772-778.
- 25. Barbucci R, Lamponi S, Borzacchiello A, Ambrosio L, Fini M, Torricelli P, Giardino R. Hyaluronic acid hidrogel in the treatment of osteoarthritis. Biomaterials 2002; 23: 4503-4513.
- 26. Palumbo FS, Pitarresi Giovanna, Mandracchia D, Tripodo G, Giammona G. New graft copolymers of hyaluronic acid and polylactic acid: Synthesis and characterization. Carbohydrate Polymers 2006; 66: 379-385.
- 27. Ji Y, Ghosh K, Shu XZ, Li B, Sokolov JC, Prestwich GD, Clark RAF, Rafailovich MH. Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials 2006; 27: 3782-3792.
- 28. Duranti F, Salti G, Bovani B, Calandra M, Rosati ML. Injectable hyaluronic acid gel for soft tissue augmentation: A clinical and histological study. Dermatologic Surgery 1998; 24: 1317-1325.
- 29. Bacaková L, Stary V, Kofronova O, Lisa V. Polishing and coating carbon fiberreinforced carbon composites with a carbon-titanium layer enhances adhesion and growth of osteoblast-like MG63 cells and vascular smooth muscle cells in vitro. Journal of Biomedical Materials Research 2001; 54(4): 567-578.
- 30. Kettunen J, Mäkelä A, Miettinen H, Nevalainen T, Heikkilä M, Törmälä P, Rokkanen P. Fixation of distal femoral osteotomy with an intramedullary rod: early failure of carbon fibre composite implant in rabbits. Journal of Biomaterials Science Polymer Edition 1999; 10(7): 715-28.
- 31. Błażewicz M. Carbon materials in the treatment of soft and hard tissue injuries. European Cells and Materials 2001; 2: 21-29.
- 32. Błażewicz M, Piekarczyk I, Menaszek E, Haberko K. Polymer and carbon fibers with HAp nanopowder: properties and biocompatibility of degradation products. European Cells and Materials 2004; 7(1): 47.
- 33. Czajkowska B, Błażewicz M. Phagocytosis of chemically modified carbon materials. Biomaterials 1997; 18: 69-74.
- 34. Chłopek J, Morawska-Chochół A, Paluszkiewicz C. FTIR evaluation of PGLA-Carbon fibers composite behaviour under in vivo conditions. Journal of Molecular Structure 2008; 875: 101-107.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a29199b5-8055-4f9c-9cf7-836a175d215e