PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A queueing model for an automatic manufacturing system with disasters, breakdowns, and vacations : optimal design and analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study a queueing model with disasters, working breakdowns, balking, reneging, and vacations. This is a novel and realistic queueing model that captures the complex dynamics and behaviors of an automatic manufacturing system (AMS) with various uncertainties and disruptions. The system loses all customers when a disaster occurs and repairs start immediately. New customers get slower service during breakdowns. We use matrix methods to find the system’s steady state along with performance measures like the expected number of customers lost, the expected waiting time, and system reliability. We also optimize the system parameters (system capacity, number of servers, service rates) to minimize the cost function using a combined direct search method and quasi-Newton method. Our results can enhance the AMS’s performance, profit, and customer satisfaction.
Rocznik
Strony
231--250
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • Laboratory of Stochastic Models, Statistic and Applications, University of Saida-Dr. Moulay Tahar, Saida, Algeria
  • Laboratory of Mathematics, Djillali Liabes University of Sidi Bel Abbes, 22000 Sidi Bel Abbes, Algeria
  • Department of Applied Mathematics, Andhra University, Visakhapatnam, India
Bibliografia
  • [1] Afroun, F., Aïssani, D., Hamadouche, D., and Boualem, M. Q–matrix method for the analysis and performance evaluation of unreliable M/M/1/N queueing model. Mathematical Methods in the Applied Sciences 41, 18 (2018), 9152–9163.
  • [2] Ammar, S. I. Transient solution of an M/M/1 vacation queue with a waiting server and impatient customers. Journal of the Egyptian Mathematical Society 25, 3 (2017), 337–342.
  • [3] Ammar, S. I., and Rajadurai, P. Performance analysis of preemptive priority retrial, queueing system with disaster under working breakdown services. Symmetry 11, 3 (2019), 419.
  • [4] Atencia, I., and Moreno, P. The discrete-time Geo/Geo/1 queue with negative customers and disasters. Computers & Operations Research 31, 9 (2004), 1537–1548.
  • [5] Bouchentouf, A. A., Boualem, M., Yahiaoui, L., and Ahmad, H. A multi-station unreliable machine model with working vacation policy and customers’ impatience. Quality Technology & Quantitative Management 19, 6 (2022), 766–796.
  • [6] Bouchentouf, A. A., Cherfaoui, M., and Boualem, M. Performance and economic analysis of a single server feedback queueing model with vacation and impatient customers. OPSEARCH 56 (2019), 300–323.
  • [7] Bouchentouf, A. A., Cherfaoui, M., and Boualem, M. Analysis and performance evaluation of Markovian feedback multi–server queueing model with vacation and impatience. American Journal of Mathematical and Management Sciences 40, 3 (2021), 261–282.
  • [8] Bouchentouf, A. A., Medjahri, L., Boualem, M., and Kumar, A. Mathematical analysis of a Markovian multiserver feedback queue with a variant of multiple vacations, balking and reneging. Discrete and Continuous Models and Applied Computational Science 30, 1 (2022), 21–38.
  • [9] Chen, A., and Renshaw, E. The M/M/1 queue with mass exodus and mass arrivals when empty. Journal of Applied Probability 34, 1 (1997), 192–207.
  • [10] Cherfaoui, M., Bouchentouf, A. A., and Boualem, M. Modeling and simulation of Bernoulli feedback queue with general customers’ impatience under variant vacation policy International Journal of Operational Research 46, 4 (2023), 451–480.
  • [11] Chew, S. Continuous-service M/M/1 queuing systems. Applied System Innovation 2, 2 (2019), 16.
  • [12] Daigle, J. N. Elementary continuous-time Markov chain-based queueing models. In Queueing Theory with Applications to Packet Telecommunication, J. N. Daigle, Ed., Springer US, Boston, MA, 2005, pp. 57–105.
  • [13] Deena Merit, C. K., and Haridass, M. A simulation study on the necessity of working breakdown in a state dependent bulk arrival queue with disaster and optional re-service. International Journal of Ad Hoc and Ubiquitous Computing 41, 1 (2022), 1–15.
  • [14] Demircioglu, M., Bruneel, H., and Wittevrongel, S. Analysis of a discrete-time queueing model with disasters. Mathematics 9, 24 (2021), 3283.
  • [15] Yue, D., Yue, W., and Sun Y. Performance analysis of an M/M/c/N queueing system with balking, reneging and synchronous vacations of partial servers In Operations Research and Its Applications. The Sixth International Symposium on Operations Research and Its Applications (ISORA’06) Xinjiang, China, August 8–12, 2006, X.-S. Zhang, D.-G. Liu and L.-Y. Wu, Eds., pp. 128–143.
  • [16] Doshi, B. T. Queueing systems with vacations – A survey. Queueing Systems 1, 1 (1986), 29–66.
  • [17] Graves, S. C. The application of queueing theory to continuous perishable inventory systems. Management Science 28, 4 (1982), 400–406.
  • [18] Houalef, M., Bouchentouf, A. A., and Yahiaoui, L. A multi-server queue in a multi-phase random environment with waiting servers and customers’ impatience under synchronous working vacation policy. Journal of the Operations Research Society of China 11, 3 (2023), 459-487.
  • [19] Jain, G., and Singman, K. A Pollaczek–Khintchine formula for M/G/1 queues with disasters. Journal of Applied Probability 33, 4 (1996), 1191–1200.
  • [20] Jiang, T., Liu, L., and Li, J. Analysis of the M/G/1 queue in multi-phase random environment with disasters. Journal of Mathematical Analysis and Applications 430, 2 (2015), 857–873.
  • [21] Kalidass, K., and Kasturi, R. A queue with working brekdowns. Computers & Industrial Engineering 63, 4 (2012), 779–783.
  • [22] Kim, B. K., and Lee, D. H. The M/G/1 queue with diasters and working breakdowns. Applied Mathematical Modelling 38, 5-6 (2014), 1788–1798.
  • [23] Kumar, A., Boualem, M., Bouchentouf, A. A., and Savita. Optimal analysis of machine interference problem with standby, random switching failure, vacation interruption and synchronized reneging. In Applications of Advanced Optimization Techniques in Industrial Engineering (2022), A. Goel, A. Chauhan and A. K. Malik, Eds., CRC Press, pp. 155–168.
  • [24] Lee, D. H., Yang, W. S., and Park, H. M. Geo/G/1 queues with disasters and general repair times. Applied Mathematical Modelling 35, 4 (2011), 1561–1570.
  • [25] Padmavathy, R., Kalidass, K., and Ramanath, K. Vacation queues with impatient customers and a waiting server. International Journal of Software Engineering and Knowledge Engineering 1,1 (2011), 10–19.
  • [26] Rashid, R., Hoseini, S. F., Gholamian, M. R., and Feizabandi, M. Application of queuing theory in productioninventory optimization. Journal of Industrial Engineering International 11, 4 (2015), 485–494.
  • [27] Suranga Sampath, M. I. G., and Liu, J. Impact of customers’ impatience on an M/M/1 queueing system subject to differentiated vacations with a waiting server. Quality Technology & Quantitative Management 17, 2 (2018), 125–148.
  • [28] Takagi, H. Queueing Analysis: A Foundation of Performance Analysis, Volume 1: Vacation and Priority Systems. Elsevier, Amsterdam, 1991.
  • [29] Tian, N., and Zhang, Z. G. Vacation queueing models: Theory and applications. Springer Science & Business Media. 2006.
  • [30] Tian, N., Li, Q.-L., and Gao, J. Conditional stochastic decompositions in the M/M/c queue with server vacations. Communications in Statistics. Stochastic Models 15, 2 (1999), 367–377.
  • [31] Towsley, D., and Tripathi, S. K. A single server priority queue with server failures and queue flushing. Operations Research Letters 10, 6 (1991), 353–362.
  • [32] Yang, W. S., and Chae, K. C. A note on GI/M/1 queue with poisson negative arrival. Journal of Applied Probability 38, 4 (2001), 1081–1085.
  • [33] Ziad, I., Vijaya Laxmi, P., Bhavant, E. G., Bouchentouf, A. A., and Majid, S. A matrix geometric solution of a multi-server queue with waiting servers and customers’ impatience under variant working, vacation and vacation interruption. Yugoslav Journal of Operations Research 33, 3 (2023), 389-407.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a29056b0-7304-46dd-b73c-1f748b9dd24f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.