PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Threats and possible approaches of vulnerability assessment of natural hazards on road infrastructure

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Natural hazards are frequently causing disturbances for different types of infrastructures, in particular for transport systems. Flooding and storm are considered as major threats to these systems. Based on examples of natural hazards’ impact on roads, possible approaches of vulnerability assessment are described. In order to reduce the threats resulting from natural hazards on road transport, appropriate technical countermeasures to increase resilience and robustness for continuous road safety and mobility are necessary. Moreover, the behaviour of the driver is also an important factor to avoid accidents in case of specific weather conditions. Autonomous driving may support a reduction of accidents in the future and, in particular, necessary evacuation processes in cases of wildfires or hurricanes.
Rocznik
Strony
1--10
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • Formerly Bundesamt für Entsorgungssicherheit, Salzgitter, Germany
autor
  • IVBB mbH, Braunschweig, Germany
Bibliografia
  • [1] Amin, M.S.R., Zareie, A. & Amador-Jiménez, L.E. (2014). Climate change modeling and the weather-related road accidents in Canada. Transportation Research Part D: Transport and Environment 32, 171-183.
  • [2] Axelsen, Ch., Grauert, M., Liljegren, E., Bowe, M. & Sladek, B. (2016). Implementing climate change adaptation for European road administrations. 6th Transport Research Arena April 18-21, 2016.
  • [3] Berg, H.P. (2012). Safety culture from the perspective of road safety, Proceedings of the International Road Safety Seminar, GAMBIT 2012, Gdansk, 26-27 April 2012.
  • [4] Berg, H.P. (2017). Risks and consequences of weather hazards on railway infrastructure. Journal of Polish Safety and Reliability Association, Summer Safety and Reliability Seminars, Volume 8, Number 1, 1-11.
  • [5] Bergel-Hayat, R., Debbarh, M., Antoniou, C. & Yannis, G. (2013). Explaining the road accident risk: Weather effects. Accident Analysis and Prevention. 60, 456-465.
  • [6] Dangendorf, S. et al. (2017). Reassessment of 20th century acceleration global mean sea level rise. Proc. Natl. Acad. Sci. USA 114, 5946-5951.
  • [7] De Almeida, B.A. & Mostafavi, A. (2016). Resilience of infrastructure systems to sea-level rise in coastal areas: impacts, adaption measures and implementation challenges. Sustainability 8, 11-15.
  • [8] Doll, C., Trinks, C., Sedlacek, N., Pelican, V., Comes, T. & Schultmann, F. (2014). Adapting rail and road networks to weather extremes: case studies for southern Germany and Austria. Natural hazards 72, 1, 63-85.
  • [9] Feizizadeh B., Blaschke T. (2013). GISmulticriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran. Natural Hazards 65, 2105-2128.
  • [10] Fernández D.S., Lutz M.A. (2010). Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Eng Geol 111, 90-98.
  • [11] Frauenfelder, R. et al. (2017). Impacts of extreme weather events on transport infrastructure in Norway. Nat. Hazards Earth Syst. Sci. Manuscript under review. Discussion started on: 20 December 2017, https://doi.org/10.5194/nhess-2017-437.
  • [12] Gao, J. et al. (2016). The association between meteorological factors and road traffic injuries: a case analysis from Shantou city, China. Scientific Reports 6, article number 37300.
  • [13] Groenemeijer, P. et al. (2015). Past Cases of Extreme Weather Impact on Critical Infrastructure in Europe. Project Report. Available at: http://rain-project.eu/wp-content/uploads/ 2015/11/D2.2-Past-Cases-final.compressed.pdf (last access: 11 July 2017).
  • [14] Hackl, J., Lam, J. C., Heitzler, M., Adey, B.T., Hurni, L. (2018). Estimating the risk related to networks: a methodology and an application on a road network. Manuscript under review. Journal Nat. Hazards Earth Syst. Sci.
  • [15] Han, W., Liang, C., Jiang, B., Ma, W. & Zhang, Y. (2016). Major natural disasters in China, 1985– 2014: occurrence and damages. Int. J. Environ. Res. Public Health 13, 11-18.
  • [16] Karlsson, C.S.J., Kalantari, Z., Mörtberg, U. et al. (2017). Natural Hazard Susceptibility Assessment for Road Planning Using Spatial Multi-Criteria Analysis. Environmental Management, 60, 823. https://doi.org/10.1007/s00267-017-0912-6.
  • [17] Kråbøl, E.H. (2016). Investigating and predicting landslides using a rainfall-runoff model in Southern Norway. Thesis. University of Oslo, May 2016.
  • [18] Lam, J. C. & Adey, B. T. (2016). Functional loss assessment and restoration analysis to quantify indirect consequences of hazards. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering 2. Issue 4.
  • [19] Leviäkangas, P. et al. (2014). Extreme Weather Impacts on Transport Systems. Technical Report, VTT Technical Research Centre of Finland.
  • [20] Leviäkangas, P. & Michaelides, S. (2014). Transport system management under extreme weather risks: views to project appraisal, asset value protection and risk-aware system management. Natural Hazards 72, 1, 263-286.
  • [21] L'Heureux, J.-S., Locat, A., Leroueil, S., Demers, D. & Locat, J. (2013). Landslides in Sensitive Clays: From Geosciences to Risk Management. Springer Science & Business Media.
  • [22] Nerem, R.S., Beckley, B.D., Fasullo, J.T., Hamlington, B.D., Masters, D. & Mitchum, G.T. (2017). Climate-change-driven accelerated sealevel rise detected in the altimeter era. Proceedings of the National Academic of Sciences of the United States of America, published ahead of print February 12, 2018.
  • [23] Nissen, K. & Ulbrich, U. (2017). Increasing frequencies and changing characteristics of heavy precipitation events threatening infrastructure in Europe under climate change. Nat. Hazards Earth Syst. Sci., 17, 1177-1190. https://doi.org/10.5194/nhess-17- 1177-2017.
  • [24] Nogal, M., O’Connor, A., Caulfield, B. & Brazil, W. (2016). A multidisciplinary approach for risk analysis of infrastructure networks in response to extreme weather. 6th Transport Research Arena April 18-21, 2016.
  • [25] Nordal,S. et al. (2017. Lessons learned from the 2015 Soerkjosen shoreline landslide in Norway. Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul 2017, 2183- 2186.
  • [26] Piciullo, L., Dahl, M.-P., Devoli, G., Colleuille; H. & Calvello, M. (2017). Adapting the EDuMaP method to test the performance of the Norwegian early warning system for weather-induced landslides. Nat. Hazards Earth Syst. Sci. 17, 817-831.
  • [27] Schlögl, M., Avian, M., Richter, G. , Thaler, T., Heiss, G. , Fuchs, S. & Lenz, G. (2018). On the nexus between landslide susceptibility and transport infrastructure – agent-based vulnerability assessment of rural road networks in the Eastern European Alps. Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-93, Manuscript under review for journal Nat. Hazards Earth Syst. Sci., Discussion started: 4 April 2018.
  • [28] Setunge, S. (2017). Enhancing resilience of critical road infrastructure: bridges, culverts and flood ways under natural hazards. Annual project report 2016-2017. Bushfire and Natural Hazards CRC, September 2017.
  • [29] Shahid, S. & Minhans, A. (2016). Climate change and road safety: a review to assess impacts in Malaysia. Jurnal Teknologi (Sciences & Engineering) 78, 4, 1-8.
  • [30] Stocker, T.F. et al. (editors.). (2013). Summary for Policymakers. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • [31] Thakur, V. (2016). Landslide hazards in sensitive clays: Recent advances in assessment and mitigation strategies. NGM 2016, Proceedings of the 17th Nordic Geotechnical Meeting, Challenges in Nordic Geotechnic, Reykjavik, 25th – 28th of May 2016.
  • [32] Vécsei, P. & Kovács, K. (2014). Statistical analysis of relationships between road accidents involving personal injury and meteorological variables (in Hungary). Idojaras 118, 4, 349-378.
  • [33] Voumard, J., Caspar, O., Derron, M.-H. & Jaboyedoff, M. (2013). Dynamic risk simulation to assess natural hazards risk along roads. Nat. Hazards Earth Syst. Sci. 13, 2763-2777.
  • [34] VTT Technical Research Centre of Finland. (2011). Extreme weather impacts on transport systems, available at: http://www.vtt.fi/publications/index.jsp (last access: 04.02.2018).
  • [35] Zumbrunnen, T., Thuro, K. & König, S. (2017). Dealing with natural hazards along federal state roads in Bavaria. Geomechanics and Tunnelling 10, 1, 34-46.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a28b6253-ba79-4aa0-b29c-31d12aa89737
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.