PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Combining Spectral Analysis with Artificial Intelligence in Heart Sound Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The auscultation technique has been widely used in medicine as a screening examination for ages. Nowadays, advanced electronics and effective computational methods aim to support the healthcare sector by providing dedicated solutions which help physicians and support diagnostic process. In this paper, we propose a machine learning approach for the analysis of heart sounds. We used the spectral analysis of acoustic signal to calculate feature vectors and tested a set of machine learning approaches to provide the most effective detection of cardiac disorders. Finally, we achieved 91% of sensitivity and 99% of positive predictivity for a designed algorithm based on convolutional neural network.
Twórcy
  • Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • Faculty of Mechanical Engineering and Robotics AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • Faculty of Mechanical Engineering and Robotics AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C., et al. (2016). Deep speech 2: End-to-end speech recognition in english and mandarin. In: International Conference on Machine Learning, pp. 173–182.
  • 2. Azra’ai, R.A., bin Taib, M.N., Tahir, N.M. (2008). Artificial neural network for identification of heart problem. Signal Processing and Communication Systems, 2008. In: ICSPCS IEEE 2nd International Conference on, pp. 1–6.
  • 3. Dey, N., Mishra, G., Nandi, B., Pal, M., Das, A., Chaudhuri, S.S. (2012). Wavelet based watermarked normal and abnormal heart sound identification using spectrogram analysis. In: Computational Intelligence & Computing Research (ICCIC), IEEE International Conference on, pp. 1–7. IEEE.
  • 4. Grochala, D., Kajor, M., Kucharski, D., Iwaniec, M., Kantoch, E. (2018). A Novel Approach in Auscultation Technology-New Sensors and Algorithms. In: IEEE 11th International Conference on Human System Interaction (HSI), pp. 240–244..
  • 5. Kajor, M., Grochala, D., Iwaniec, M., Kantoch, E., Kucharski, D. (2018). A prototype of the mobile stethoscope for telemedical application. In: IEEE XIV-th International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH), pp. 5–8.
  • 6. Kucharski, D., Grochala, D., Kajor, M., Kańtoch, E. (2017). A Deep Learning Approach for Valve Defect Recognition in Heart Acoustic Signal. In: International Conference on Information Systems Architecture and Technology, pp. 3–14, Springer, Cham.
  • 7. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12(Oct), 2825–2830.
  • 8. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1), 1929–1958.
  • 9. Yang, T.C.I., Hsieh, H. (2016). Classification of acoustic physiological signals based on deep learning neural networks with augmented features. In: 2016 IEEE Computing in Cardiology Conference (CinC), pp. 569–572.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a28a7ad9-a03c-4eaa-8d97-ef276c76ef44
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.