PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption of Naproxen Sodium from Aqueous Solutions on Commercial Activated Carbons

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The pollution of surface and drinking water with pharmaceuticals is one of the growing problems. One of the groups used in large quantities involves nonsteroidal anti-inflammatory drugs which can be bought without a prescription. This group includes naproxen, which was identified in wastewater, surface water and even drinking water all over the world. The aim of the study was to assess the opportunities for the removal of naproxen sodium from water using carbon sorbents. The measurements were carried out for three commercial microporous (WG-12 and F-300) and micro-mesoporous (ROW 08 Supra) activated carbons. The kinetics and statics of adsorption were studied. The adsorption from solutions with pH from 6 to 10 and temperature from 20°C to 40°C was analysed. It was found that the higher the pH, the lower the adsorption and the higher the temperature, the greater the adsorption of naproxen sodium. The highest adsorption of naproxen sodium was obtained for the F-300 activated carbon, whereas the lowest – for the ROW 08 Supra activated carbon. It was found that the adsorption results depend on many factors, the most important of which include hydrogen bonds between carboxyl groups of naproxen sodium and phenolic groups on the surface of activated carbons and electrostatic repulsion between the anions of naproxen sodium and negatively charged the surface of the activated carbon. The results of adsorption kinetics were described with the following models: pseudo-first order and pseudo-second order, intraparticle diffusion, and Elovich. The highest values of correlation coefficient R2 were obtained for the pseudo-second order and Elovich model. The results of adsorption statics were described using the Freundlich, Langmuir, and Temkin models. A good match between isotherms and the obtained results was obtained for the Freundlich and Temkin equations. It was found based on the adsorption intensity 1/n and distribution coefficient RL that this process was beneficial for all the considered activated carbons and the investigated adsorption conditions.
Słowa kluczowe
Rocznik
Strony
241--251
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
  • Czestochowa University of Technology, Faculty of Infrastructure and Environment, Brzeźnicka Str. 60a, 42-200 Częstochowa, Poland
  • Czestochowa University of Technology, Faculty of Infrastructure and Environment, Brzeźnicka Str. 60a, 42-200 Częstochowa, Poland
Bibliografia
  • 1. Attia T.M.S., Hu X.L., Qiang Y.D. 2013. Synthesized magnetic nanoparticles coated zeolite for the adsorption of pharmaceutical from aqueous solution using batch and column studies. Chemosphere, 93, 2076-2085.
  • 2. Baccar R., Sarra M., Bouzid J., Feki M., Blanquez P. 2012. Removal of pharmaceutical compounds by activated carbon prepared from agricultural byproduct. Chem. Eng. J., 211-212, 310-317.
  • 3. Baranowska I., Kowalski B. 2012. A Rapid UHPLC Method for the Simultaneous Determination of Drugs from Different Therapeutic Groups in Surface Water and Wastewater. Bull. Environ. Contam. Toxicol., 89, 8–14.
  • 4. Bhadra B.N., Seo P.W., Jhung S.H. 2016. Adsorption of diclofenac sodium from water using oxidized activated carbon. Chem. Eng. J., 301, 27-34.
  • 5. Boleda M.R., Galceran M.T., Ventura F. 2011. Behavior of pharmaceutical and drugs of abuse in a drinking water treatment plant (DWTP) using combined conventional and ultrafiltration and reverse osmosis (UF/RO) treatments. Environ. Pollut., 159, 1584-1591.
  • 6. Bui T.X. Choi H. 2010. Influence of ionic strength, anions, cations, and natural organic matter on the adsorption of pharmaceuticals to silica. Chemosphere, 80, 681-686.
  • 7. Carmona E., Pico Y., Andrau V. 2014. Occurrence of acidic pharmaceuticals and personal products in Turia River Basin: From waste to drinking water. Science of The Total Environment, 48(1), 53-63.
  • 8. Cuerda-Correa E.M., Domínguez-Vargas J.R., Olivares-Marínb F.J., Beltrán de Heredia J. 2010. On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal antiinflammatory drugs from river water. Journal of Hazardous Materials, 177, 1046–1053
  • 9. Czerwiński J., Kłonica A., Ozonek J. 2015. Pozostałości farmaceutyków w środowisku wodnym i metody ich usuwania. Czasopismo Inżynierii lądowej, środowiska i architektury, 62(1/15), 27-42.
  • 10. Dada A.O., Olalekan A.P., Olatunya A.M., Dada O. 2012. Langmuir, Freundlich and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn+ unto phosphoric acid modified rice husk. IOSR J. Appl. Chem., 3(1), 38-45.
  • 11. Daneshvar A., Svanfelt J., Kronberg L.2010. Winter accumulation of acidic pharmaceuticals in a Swedish river. Environ. Sci. Pollut. Res., 17, 908-916.
  • 12. Farmakopea Polska VIII tom 2, 3. Wydawnictwa Państwowy Zakład Wydawnictw Lekarskich, 2008.
  • 13. Feng L., Van Hullebusch E.D., Rodrigo M.A., Esposito G., Oturan M.A. 2013. Removal of residual anti-inflammatory and pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chem. Eng. J. 228, 944-964.
  • 14. Helenkar A., Sebok A., Zarya G., et al. 2010. The role of the acquisition methods in the analysis of the non-steroidal anti-inflammatory drugs in Danube River by gas chromatography – mass spectrometry. Talanta, 82, 600-607.
  • 15. Hernando M.D., Mezcua M., Fernandez-Alba A.R., Barcelo D. 2006. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 602, 334-342.
  • 16. Kasprzyk-Hordern B., Dąbrowska A., Vieno N., Kronberg L., Nawrocki J. 2007. Occurrence of Acidic Pharmaceuticals in the Warta River in Poland. Chem. Anal., 52, 289 -303.
  • 17. Klavarioti M., Mantzavinos D., Kassinos D. 2009. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Intern., 35, 402-417.
  • 18. Lach J. 2019. Adsorption of chloramphenicol on commercial and modified activated carbons, Water, 11, 1141.
  • 19. Lach J., Stępniak L., Ociepa-Kubicka A. 2018. Antibiotics in the environment as one of the barriers to sustainable development. Problemy Ekorozwoju, 13(1), 197-207.
  • 20. Lindholm-Lehto P.C., Ahkola H.S.J., Knuutinen J.S., Herve S.H. 2016. Widespread occurrence and seasonal variation of pharmaceuticals in surface waters and municipal wastewater treatment plants in central Finland. Environ. Sci. Pollut. Res., 23, 7985–7997.
  • 21. de Luna RM.D.G., Murniati, Budianta W., Riviera K. K.P., Arazo R.O. 2017. Removal of sodium diclofenac from aqueous solution by adsorbents derived from cocoa pod husks. J.Environ. Chem. Eng., 5, 1465-1474.
  • 22. Manzo V., Honda L., Navarro O., Ascar L., Richter P. 2014. Microextraction of nonsteroidal antiinflammatory drugs from waste water samples by rotating-disk sorptive extraction. Talanta, 128, 486-492.
  • 23. Minguez L., Pedelucq J., Farcy E., Ballandonne C., Budzinski H., Halm-Lemeille M-P. 2016. Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environ. Sci. Pollut. Res., 23, 4992–5001
  • 24. Monteiro S.C., Boxall A.B. 2010. Occurrence and fate of human pharmaceuticals in the environment. Rev. Environ. Contam. Toxicol., 202, 53-154.
  • 25. Naproxen sodium, Safety Data Sheet, sigma-aldrich.com
  • 26. Nikolaou A, Meric S, Fatta D. 2007. Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal. Bioanal. Chem., 387, 1225-1234.
  • 27. Nourmoradi H., Moghadam K.F., Jafari A., Kamarehla B. 2018. Removal of acetaminophen and ibuprofen from aqueous by activated carbon derived from Quercus Branyii (Oak) acorn as a low-cost biosorbent. . J.Environ. Chem. Eng., 6, 6807-6815.
  • 28. Onal Y., Akmil-Baser C., Sarici-Ozdemir C. 2007, Elucidation of the naproxen sodium adsorption onto activated carbon prepared from waste apricot: kinetic, equilibrium and thermodynamic characterization. J. Hazard. Mater., 148, 727-734.
  • 29. Patrolecco L., Silvio Capri S., Ademollo N. 2015. Occurrence of selected pharmaceuticals in the principal sewage treatment plants in Rome (Italy) and in the receiving surface waters. Environ. Sci. Pollut. Res., 22, 5864–5876.
  • 30. Paul S.C., Githinji L.J.M, Ankumah R.O., Willian K.R., Pritchett G.. 2014. Sorption Behavior of Ibuprofen and Naproxen in Simulated Domestic Wastewater. Water Air Soil Pollut., 225, 1821.
  • 31. Płaziński W., Rudziński W. 2011. Adsorption Kinetics at solid/solution interfaces the meaning of the pseudo-firstand pseudo-second-order equations. Wiad. Chem., 65, 1055–1067.
  • 32. Santos J.L., Aparicio I., Alonso E., Callejon M. 2005. Simultaneous determination of pharmaceutically active compounds in wastewater samples by solid phase extraction and high-performance liquid chromatography with diode array and fluorescence detectors. Analytica Chemica Acta, 550, 116-122.
  • 33. Sarici-Ozdemir C., Onal Y. 2010. Study to investigate the importance of mass transfer of naproxen sodium onto activated carbon. Chemical Engineering and Processing, 49, 1058-1065
  • 34. Stancova V., Żikova A., Svobodova Z., Kloas W. 2015. Effects of the non-steroidal anti-inflammatory drug (NSAID) naproxen on gene expression of antioxidant enzymes in zebrafish (Danio rerio). Environ. Toxicol. Pharmacol., 40, 343-348.
  • 35. Szymonik A., Lach J., Malińska K. 2017. Fate and removal of pharmaceuticals and illegal drugs present in drinking water and wastewater. Ecol. Chem. Eng. S, 24(1), 65-85.
  • 36. Tambosi J.L., de Sena R.F., Favier M., Gebhardt W., José H.J., Schröder H.F. 2010. Removal of pharmaceutical compounds in membrane bioreactors (MBR) applying submerged membranes. Desalination, 261, 148-156.
  • 37. TogolaA., Budzinski H. 2008. Multi-residue analysis of pharmaceutical compoundsing aqueous samples. J. Chromatogr. A. 1177,150-158.
  • 38. Tran H.N., You S-J., Nguyen T.V., Chao H-P. 2017. Insight into the adsorption mechanism of cationic dye onto biosorbents derived from agricultural wastes. Chem. Eng. Commun., 204(9), 1020-1036.
  • 39. Tran H.N.,You S-J., Hosseini-Bandegharaei A., Chao H.-P. 2017. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res., 120, 88-116.
  • 40. de Voogt P., Janex-Habibi M.L., Sacher F., et al. 2009. Development of a common priority list of pharmaceuticalsrelevantforthe water cycle. Water Sci. Technol., 59(1), 39-46.
  • 41. Wang L., Ying G.G., Zhao J.L., Yang X.B., Chen F. 2010. Occurrence and risk assessment of acidic pharmaceuticals in the Yellow River, Hai River and Liao River of north China. Science of the Total Environment, 08, 3139-3147.
  • 42. Zgoła-Grześkowiak A. 2010. Application of DLLME to isolation and concentration of nonosteroidal ant-inflammatory drugs in environmental water samples. Chromatogr., 72, 671-678.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a288f7b0-d71d-416d-94fa-fddf4a9ed6f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.