PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Robotic swarm self-organisation control

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article proposes a new swarm control method using distributed proportional-derivative (PD) control for self-organisation of swarm of nonholonomic robots. Kinematics control with distributed proportional-derivative (DPD) controller enables generation of desired robot trajectory achieving collective behaviour of a robotic swarm such as aggregation and pattern formation. Proposed method is a generalisation of virtual spring-damper control used in swarm self-organisation. The article includes the control algorithm synthesis using the Lyapunov control theory and numeric simulations results.
Rocznik
Strony
130--134
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
  • Faculty of Mechanical Engineering and Aeronautics, Department of Applied Mechanics and Robotics, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
  • Faculty of Mechanical Engineering and Aeronautics, Department of Applied Mechanics and Robotics, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Balkacem K., Foudil, C. (2016), A virtual viscoelastic based aggregation model for self-organization of swarm robots system, TAROS 2016: Towards Autonomous Robotic Systems, 202–213, .
  • 2. Brambilla M. Ferrante E., Birattari M., Dorigo M. (2013), Swarm robotics: a review from the swarm engineering perspective, Swarm Intell., 7(1), 1-41.
  • 3. Cheah C.C., Hou S.P., Slotine J.J. (2009), Region-based shape control for a swarm of robots, Automatica, 45(10), 2406-2411.
  • 4. Christensen A.L., O’Grady R., Dorigo M. (2009), From fireflies to fault-tolerant swarms of robots, IEEE Transactions on Evolutionary Computation, 13(4), 754-766.
  • 5. Gazi V. (2005), Swarm aggregations using artificial potentials and sliding-mode control, IEEE Transactions on Robotics, 21(6), 1208-1214.
  • 6. Gazi V., Passino K.M. (2003), Stability analysis of swarms, IEEE Transactions on Automatic Control, 48(4), 692-697.
  • 7. Gazi V., Passino K.M. (2004), A class of attractions/repulsion functions for stable swarm aggregations, International Journal of Control, 77(18), 1567-1579.
  • 8. Giergiel J., Żylski, W. (2005), Description of motion of a mobile robot by Maggie’s equations, J. Theor. Appl. Mech., 43(3), 511-521.
  • 9. Hendzel Z. (2007), An adaptive critic neural Network for motion control of Wheeler mobile robot, Nonlinear Dynamics, 50, 849-855.
  • 10. Hildenbrandt H., Carere C., Hemelrijk C.K. (2010) Self-organized aerial displays of thousands of starlings: a model,Behavioral Ecology, 21(6), 1349-1359,.
  • 11. Hsieh M.A., Halasz A., Bergman S., Kumar V. (2008), Biologically inspired redistribution of a swarm of robots among multiple sites, Swarm Intelligence, 2(2-4), 121-141.
  • 12. Lewis F.L., Jagannathan S., Yesildirek A. (1999), Control of Robot Manipulators and Nonlinear Systems, Tylor & Frnacjis, London.
  • 13. Rauch E., Millonas M.M., Chialvo D.R. (1995), Pattern formation and functionality in swarm models, Physics Letters A, 207(3-4), 185- 193.
  • 14. Reynolds C.W. (1987) Flocks, herds and schools: A distributed behavioral model, ACM SIGGRAPH Computer Graphics, 21(4), 25-34, New York.
  • 15. Shucker B., Bennett J.K. (2005),Virtual spring mesh algorithms for control of distributed robotic macrosensors, University of Colorado at Bulder, Technical Report CU-CS-996-05.
  • 16. Spears W.M., Spears D.F., Hamann J.C., Heil R. (2004), Distributed, physics-based control of swarms of vehicles, Autonomous Robots, 17(2-3), 137-162.
  • 17. Spong M.W., Vidyasagar M. (1989), Robot dynamics and control, John Wiley & Sons.
  • 18. Trianni V. (2008), Evolutionary Swarm Robotics: Evolving Selforganising Behaviours in Groups of Autonomous Robots, Studies in Computational Intelligence, 108. Springer, Berlin.
  • 19. Urcola P., Riazuelo L., Lazaro M.T., Montano L. (2008), Cooperative navigation using environment compliant robot formations, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2789-2794.
  • 20. Wiech J., Eremeyev V.A., Giorgio I. (2018), Virtual spring damper method for nonholonomic robotic swarm self-organization and leader following, Continuum Mechanics and Thermodynamics, 1-12, Springer, 2018
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2872b85-81d5-4ac9-a010-7522e0da0a2a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.