Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Modelowanie numeryczne silnika z wirującą detonacją
Języki publikacji
Abstrakty
The idea of using the phenomenon of rotating detonation to propulsion has its roots in fifties of the last century in works of Adamson et al. and Nicholls et al. at the University of Michigan. The idea was recently reinvented and experimental research and numerical simulations on the Rotating Detonation Engine (RDE) are carried in numerous institutions worldwide, in Poland at Warsaw University of Technology (WUT) since 2004. Over the period 2010-2014 WUT and Institute of Aviation (IOA) jointly implemented the project under the Innovative Economy Operational Programme entitled ‘Turbine engine with detonation combustion chamber’. The goal of the project was to replace the combustion chamber of turboshaft engine GTD-350 with the annular detonation chamber. This paper is focused on investigation of the influence of a geometry and flow conditions on the structure and propagation stability of the rotating detonation wave. Presented results are in majority an outcome of the aforementioned programme, in particular authors’ works on the development of the in-house code REFLOPS USG and its application to simulation of the rotating detonation propagation in the RDE.
Pomysł wykorzystania zjawiska wirującej detonacji do napędu był po raz pierwszy rozważany w latach pięćdziesiątych ubiegłego wieku przez zespoły badawcze Adamsona i Nichollsa na Uniwersytecie Michigan. Badania nad silnikiem z detonacyjną komorą spalania zostały wznowione po blisko 40 latach i dziś prace prowadzone są w wielu jednostkach naukowych na świecie, a w Polsce na Politechnice Warszawskiej od 2004 roku. W latach 2010-2014 Instytut Lotnictwa oraz Politechnika Warszawska wspólnie realizowały projekt w ramach Programu Operacyjnego Innowacyjna Gospodarka ‘Silnik Turbinowy z detonacyjną komorą spalania’. Projekt zakłada zastąpienie komory spalania turbowałowego silnika GTD-350 pierścieniową komorą detonacyjną. Artykuł skupia się na badaniach numerycznych wpływu geometrii oraz parametrów przepływu na strukturę i stabilność propagacji wirującej detonacji. Przedstawione wyniki są w większości wynikiem prac autorów nad rozwojem kodu REFLOPS USG w czasie trwania projektu i koncentruje się na rozwoju i implementacji wysokowydajnych metod symulacji silnika z detonacyjną komorą spalania oraz ich zastosowaniu w symulacjach numerycznych propagacji wirującej fali detonacyjnej w silniku RDE.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
13--47
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr., wzory
Twórcy
autor
- Gexcon AS, Norway
autor
- SST SwissSafeTech AG, Switzerland
autor
- Łukasiewicz Research Network – Institute of Aviation, Al. Krakowska 110/114, 02-256 Warsaw
Bibliografia
- [1] Kindracki, J., Wolanski, P. and Gut, Z., 2011, “Experimental research on the rotating detonation in gaseous fuels-oxygen mixtures,” Shock Waves, 21(2), pp. 75-84. 10.1007/s00193-011-0298-y.
- [2] Shao, Y.-T., Liu, M. and Wang, J.-P., 2010, “Numerical Investigation of Rotating Detonation Engine Propulsive Performance,” Combustion Science and Technology, 182(11-12), pp. 1586-1597. 10.1080/00102202.2010.497316.
- [3] Yetao, S., Meng, L. and Jianping, W., 2010, “Continuous Detonation Engine and Effects of Different Types of Nozzle on Its Propulsion Performance,” Chinese Journal of Aeronautics, 23(6), pp. 647-652. 10.1016/S1000-9361(09)60266-1.
- [4] Liu, S.-J., Lin, Z.-Y., Sun, M.-B. and Liu, W.-D., 2011, “Thrust Vectoring of a Continuous Rotating Detonation Engine by Changing the Local Injection Pressure,” Chinese Physics Letters, 28(9), p. 094704. 10.1088/0256-307x/28/9/094704.
- [5] Liu, M., Zhou, R. and Wang, J.-P., 2011, “Three-dimensional simulation of rotating detonation engines,” presented at the IWDE, Tokyo.
- [6] Davidenko, D. M., Gökalp, I. and Kudryavtsev, A. N., 2007, “Numerical simulation of the continuous rotating hydrogen-oxygen detonation with a detailed chemical mechanism,” Moscow, Russia, pp. 19-22, Available: http://wehsff.imamod.ru/pages/Section 6 Propulsion Physics, Airbreathing Propulsion/Kudryavtsev.pdf
- [7] Davidenko, D. M. et al., 2009, “Continuous detonation wave engine studies for space application, ”Progress in Propulsion Physics, vol. 1, pp. 353-366. 10.1051/eucass/200901353.
- [8] Davidenko, D. M., Eude, Y., Gökalp, I. and Falempin, F., 2011, “Theoretical and Numerical Studies on Continuous Detonation Wave Engines,” presented at the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, California. 10.2514/6.2011-2334.
- [9] Davidenko, D. M., Gökalp, I. and Kudryavtsev, A. N., 2008, “Numerical Study of the Continuous Detonation Wave Rocket Engine,” presented at the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Dayton, OH. 10.2514/6.2008-2680.
- [10] Hayashi, A. K. et al., 2009, “Sensitivity Analysis of Rotating Detonation Engine with a Detailed Reaction Model,” presented at the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, Florida. 10.2514/6.2009-633.
- [11] Hishida, M., Fujiwara, T. and Wolanski, P., 2009, “Fundamentals of rotating detonations,” Shock Waves, 19(1), pp. 1-10. 10.1007/s00193-008-0178-2.
- [12] Kindracki, J., Kobiera, A., Wolanski, P., Gut, Z., Folusiak, M. and Swiderski, K., 2011, “Experimental and numerical study of the rotating detonation engine in hydrogen-air mixtures, ”Progress in Propulsion Physics, vol. 2, pp. 555-582. 10.1051/eucass/201102555.
- [13] Folusiak, M., Swiderski, K., Kobiera, A. and Wolanski, P., 2009, “Three-dimensional modeling of the Rotating Detonation Engine,” presented at the 22nd International Colloquium on the Dynamics of Explosions and Reactive Systems, Minsk, Belarus.
- [14] Yi, T.-H., Lou, J., Turangan, C., Khoo, B. C. and Wolanski, P., 2010, “Effect of Nozzle Shapes on the Performance of Continuously Rotating Detonation Engine,” presented at the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida. 10.2514/6.2010-152.
- [15] Schwer, D. and Kailasanath, K., 2010, “Numerical Investigation of Rotating Detonation Engines,” in 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 0 vols., American Institute of Aeronautics and Astronautics.
- [16] Schwer, D. and Kailasanath, K., 2012, “Feedback into Mixture Plenums in Rotating Detonation Engines,” in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 0 vols., American Institute of Aeronautics and Astronautics.
- [17] Nordeen, C. A., Schwer, D., Schauer, F., Hoke, J., Barber, T. and Cetegen, B. M., 2011, “Energy Transfer in a Rotating Detonation Engine,” in 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 0 vols., American Institute of Aeronautics and Astronautics.
- [18] Nordeen, C. A., Schwer, D., Schauer, F., Hoke, J., Barber, T. and Cetegen, B. M., 2016, “Role of inlet reactant mixedness on the thermodynamic performance of a rotating detonation engine, ”Shock Waves, 26(4), pp. 417-428. 10.1007/s00193-015-0570-7.
- [19] Schwer, D. and Kailasanath, K., 2013, “Fluid dynamics of rotating detonation engines with hydrogen and hydrocarbon fuels,” Proceedings of the Combustion Institute, 34(2), pp. 1991-1998. 10.1016/j.proci.2012.05.046.
- [20] Wolanski, P., 2013, “Detonative propulsion,” Proceedings of the Combustion Institute, 34(1), pp. 125-158. 10.1016/j.proci.2012.10.005.
- [21] Wolanski, P., 2015, “Application of the Continuous Rotating Detonation to Gas Turbine,” Applied Mechanics and Materials, vol. 782, pp. 3-12, 10.4028/www.scientific.net/AMM.782.3.
- [22] Wolanski, P. et al., 2018, Development of Gasturbine with Detonation Chamber. In: Li, J. M., Teo, C., Khoo, B., Wang, J. P., Wang, C. (eds) Detonation Control for Propulsion. Shock Wave and High Pressure Phenomena. Springer, Cham, pp. 23-37. Chap. 2. 10.1007/978-3-319-68906-7_2.
- [23] Swiderski, K., 2013, “Numerical modeling of the rotating detonation combustion chamber,” PhD Thesis, WUT, Warsaw.
- [24] Berger, M. J. and Oliger, J., 1984, “Adaptive mesh refinement for hyperbolic partial differential equations,” Journal of Computational Physics, 53(3), pp. 484-512. 10.1016/0021-9991(84)90073-1.
- [25] Vollmer, D. B., 2003, “Adaptive mesh refinement using subdivision of Unstructured elements for conservation laws,” MSc Thesis, University of Reading.
- [26] Lian, Y., Hsu, K., Shao, Y., Lee, Y., Jeng, Y. and Wu, J., 2006, “Parallel adaptive mesh-refining scheme on a three-dimensional unstructured tetrahedral mesh and its applications,” Computer Physics Communications, 175(11-12), pp. 721-737. 10.1016/j.cpc.2006.05.010.
- [27] Azevedo, J. L. F. and Korzenowski, H., 2009, “An assessment of unstructured grid finite volume schemes for cold gas hypersonic flow calculations,” Journal of Aerospace Technology and Management, 1(2), pp. 135-152.
- [28] Ripley, R. C., Lien, F.-S. and Yovanovich, M. M., 2004, “Adaptive Unstructured Mesh Refinement of Supersonic Channel Flows,” International Journal of Computational Fluid Dynamics, 18(2), pp. 189-198. 10.1080/10618560310001634168.
- [29] Ito, K. Kunugi, T. and Ohshima, H., 2010, Development and Verification of Unstructured Adaptive Mesh Technique with Edge Compatibility, Journal of Power and Energy Systems, vol. 4, pp. 72-83. 10.1299/jpes.4.72.
- [30] Berger, M. J. and Colella, P., 1989, “Local adaptive mesh refinement for shock hydrodynamics, ”Journal of Computational Physics, 82(1), pp. 64-84. 10.1016/0021-9991(89)90035-1.
- [31] Boden, E. F., 1997, “An adaptive gridding technique for conservation laws on complex domains,” PhD thesis, Cranfield University.
- [32] Mavriplis, D. J., 1995, “Multigrid techniques for unstructured meshes,” NASA Contractor Report 195070, Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA. Available: https://apps.dtic.mil/dtic/tr/fulltext/u2/a294610.pdf
- [33] Berger, M. J., 1987, “On Conservation at Grid Interfaces,” SIAM Journal on Numerical Analysis, vol. 24, p. 967. 10.1137/0724063.
- [34] Folusiak, M., 2013, “Development of simulation methods of rotating detonation in complex geometries,” PhD thesis, Warsaw University of Technology, Warsaw.
- [35] Liang, Z., Browne, S., Deiterding, R. and Shepherd, J. E., 2007, “Detonation front structure and the competition for radicals,” Proceedings of the Combustion Institute, 31(2), pp. 2445-2453. 10.1016/j.proci.2006.07.244.
- [36] Lu, T., Law, C. K. and Ju, Y., 2003, “Some aspects of chemical kinetics in chapman-jouguet detonation: Induction length analysis,” Journal of Propulsion and Power, 19(5), pp. 901-907.
- [37] Petersen, E. L. and Hanson, R. K., 1999, “Reduced kinetics mechanisms for ram accelerator combustion,” Journal of propulsion and power, 15(4), pp. 591-600.
- [38] Petersen, E. L., Davidson, D. F. and Hanson, R. K., 1999, “Ignition delay times of ram accelerator CH4/O2/diluent mixtures,” Journal of Propulsion and Power, 15(1), pp. 82-91.
- [39] Folusiak, M., Swiderski, K., Kobiera, A. and Wolanski, P., 2009, “Two-dimensional modeling of the rotating detonation with fuel injection,” presented at the European Conference for AeroSpace Sciences, Versailles, France.
- [40] Wolanski, P., 2011, “Rotating detonation wave stability,” presented at the 23rd International Colloquium on the Dynamics of Explosions and Reactive Systems, University of California, Irvine, USA.
- [41] Eude, Y., Davidenko, D. and Izrar, B., 2011, “Simulation of continuous detonation in H2-O2 mixture using adaptive mesh refinement,” presented at the 20ème Congrès Franccais de Mécanique, France. Available: http://documents.irevues.inist.fr/handle/2042/46347.
Uwagi
1. The authors want to express their thanks and gratitude to Prof. Piotr Wolanski, for scientific and technical leadership throughout the project. True appreciation for our former colleagues involved in RDE works, namely Dr Arkadiusz Kobiera, Prof. Jan Kindracki, Dr Pawel Surmacz, Dr Grzegorz Rarata,, Dr Borys Lukasik, Dr Dominik Kublik, Kamil Sobczak and Dr Michal Kawalec
2.Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2865b1b-ed84-455d-9bc3-ad02fd67a964