PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Corpus-based measures discriminate inflection and derivation cross-linguistically

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In morphology, a distinction is commonly drawn between inflection and derivation. However, a precise definition of this distinction which reflects the way it manifests across languages remains elusive within linguistic theory, typically being based on subjective tests. In this study, we present 4 quantitative measures which use the statistics of a raw text corpus in a language to estimate to what extent a given mor-phological construction changes the form and distribution of lexemes. In particular, we measure both the average and the variance of this change across lexemes. Crucially, distributional information captures syntactic and semantic properties and can be operationalised by word embeddings. Based on a sample of 26 languages, we find that we can recon-struct 89±1% of the classification of constructions into inflection and derivation in UniMorph using our 4 measures, providing large-scale cross-linguistic evidence that the concepts of inflection and deriva-tion are associated with measurable signatures in terms of form and distribution that behave consistently across a variety of languages. We also use our measures to identify in a quantitative way whether categories of inflection which have been considered non-canonical in the linguistic literature, such as inherent inflection or transpositions, appear so in terms of properties of their form and dis-tribution. We find that while combining multiple measures reduces the amount of overlap between inflectional and derivational construc-tions, there are still many constructions near the model’s decision boundary between the two categories. This indicates a gradient, rather than categorical, distinction.
Rocznik
Strony
477--529
Opis fizyczny
Bibliogr. 85 poz., rys., wykr.
Twórcy
  • Institute for Language, Cognition and Computation School of Informatics University of Edinburgh, Edinburgh, UK
  • Institute for Language, Cognition and Computation School of Informatics University of Edinburgh, Edinburgh, UK
  • Institute for Language, Cognition and Computation School of Informatics University of Edinburgh, Edinburgh, UK
Bibliografia
  • 1. Peter ACKEMA and Ad NEELEMAN (2019), Default person versus default number in agreement, pp. 21-54, Open Generative Syntax, Language Science Press, doi:10.5281/zenodo.3458062.
  • 2. Stephen R. ANDERSON (1982), Where’s morphology?, Linguistic Inquiry, 13:571-612.
  • 3. Stephen R. ANDERSON (1985), Inflectional morphology, in Language Typology and Syntactic Description, volume 3, pp. 150-201, Cambridge University Press, 1 edition.
  • 4. Antti ARPPE, Atticus HARRIGAN, Katherine SCHMIRLER, Lene ANTONSEN, Trond TROSTERUD, Sjur NØRSTEBØ MOSHAGEN, Miikka SILFVERBERG, Arok WOLVENGREY, Conor SNOEK, Jordan LACHLER, Eddie Antonio SANTOS, Jean OKIMĀSIS, and Dorothy THUNDER (2014-2019), Finite-state transducer-based computational model of Plains Cree morphology, https://giellalt.uit.no/lang/crk/PlainsCreeDocumentation.html.
  • 5. Lucas F.E. ASHBY, Travis M. BARTLEY, Simon CLEMATIDE, Luca DEL SIGNORE, Cameron GIBSON, Kyle GORMAN, Yeonju LEE-SIKKA, Peter MAKAROV, Aidan MALANOSKI, Sean MILLER, Omar ORTIZ, Reuben RAFF, Arundhati SENGUPTA, Bora SEO, Yulia SPEKTOR, and Winnie YAN (2021), Results of the second SIGMORPHON shared task on multilingual grapheme-to-phoneme conversion, in Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pp. 115-125, Association for Computational Linguistics, Online, doi:10.18653/v1/2021.sigmorphon-1.13, https://aclanthology.org/2021.sigmorphon-1.13.
  • 6. Madina BABAZHANOVA, Maxat TEZEKBAYEV, and Zhenisbek ASSYLBEKOV (2021), Geometric probing of word vectors, in ESANN 2021 Proceedings – 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 587-592, i6doc.com publication, Virtual, Online, Belgium, doi:10.14428/esann/2021.ES2021-105.
  • 7. Khuyagbaatar BATSUREN, Gábor BELLA, and Fausto GIUNCHIGLIA (2021), MorphyNet: a large multilingual database of derivational and inflectional morphology, in Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pp. 39-48, Association for Computational Linguistics, Online, doi:10.18653/v1/2021.sigmorphon-1.5, https://aclanthology.org/2021.sigmorphon-1.5.
  • 8. Khuyagbaatar BATSUREN, Omer GOLDMAN, Salam KHALIFA, Nizar HABASH, Witold KIERAŚ, Gábor BELLA, Brian LEONARD, Garrett NICOLAI, Kyle GORMAN, Yustinus Ghanggo ATE, Maria RYSKINA, Sabrina MIELKE, Elena BUDIANSKAYA, Charbel EL-KHAISSI, Tiago PIMENTEL, Michael GASSER, William Abbott LANE, Mohit RAJ, Matt COLER, Jaime Rafael Montoya SAMAME, Delio Siticonatzi CAMAITERI, Esaú Zumaeta ROJAS, Didier LÓPEZ FRANCIS, Arturo ONCEVAY, Juan LÓPEZ BAUTISTA, Gema Celeste Silva VILLEGAS, Lucas Torroba HENNIGEN, Adam EK, David GURIEL, Peter DIRIX, Jean-Philippe BERNARDY, Andrey SCHERBAKOV, Aziyana BAYYR-OOL, Antonios ANASTASOPOULOS, Roberto ZARIQUIEY, Karina SHEIFER, Sofya
  • 9. GANIEVA, Hilaria CRUZ, Ritván KARAHÓǦA, Stella MARKANTONATOU, George PAVLIDIS, Matvey PLUGARYOV, Elena KLYACHKO, Ali SALEHI, Candy ANGULO, Jatayu BAXI, Andrew KRIZHANOVSKY, Natalia KRIZHANOVSKAYA, Elizabeth SALESKY, Clara VANIA, Sardana IVANOVA, Jennifer WHITE, Rowan Hall MAUDSLAY, Josef VALVODA, Ran ZMIGROD, Paula CZARNOWSKA, Irene NIKKARINEN, Aelita SALCHAK, Brijesh BHATT, Christopher STRAUGHN, Zoey LIU, Jonathan North WASHINGTON, Yuval PINTER, Duygu ATAMAN, Marcin WOLINSKI, Totok SUHARDIJANTO, Anna YABLONSKAYA, Niklas STOEHR, Hossep DOLATIAN, Zahroh NURIAH, Shyam RATAN, Francis M.
  • 10. TYERS, Edoardo M. PONTI, Grant AITON, Aryaman ARORA, Richard J.
  • 11. HATCHER, Ritesh KUMAR, Jeremiah YOUNG, Daria RODIONOVA, Anastasia YEMELINA, Taras ANDRUSHKO, Igor MARCHENKO, Polina MASHKOVTSEVA, Alexandra SEROVA, Emily PRUD’HOMMEAUX, Maria NEPOMNIASHCHAYA, Fausto GIUNCHIGLIA, Eleanor CHODROFF, Mans HULDEN, Miikka SILFVERBERG, Arya D. MCCARTHY, David YAROWSKY, Ryan COTTERELL, Reut TSARFATY, and Ekaterina VYLOMOVA (2022), UniMorph 4.0: Universal Morphology, in Proceedings of the Thirteenth Language Resources and Evaluation Conference, pp. 840-855, European Language Resources Association, Marseille, France, https://aclanthology.org/2022.lrec-1.89.
  • 12. Laurie BAUER (2004), The function of word-formation and the inflection-derivation distinction, Words and their Places. A Festschrift for J. Lachlan Mackenzie. Amsterdam: Vrije Universiteit, pp. 283-292.
  • 13. Sacha BENIAMINE, Martin MAIDEN, and Erich ROUND (2020), Opening the Romance verbal inflection dataset 2.0: A CLDF lexicon, in Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 3027-3035, European Language Resources Association, Marseille, France, https://aclanthology.org/2020.lrec-1.370.
  • 14. Toms BERGMANIS and Sharon GOLDWATER (2017), From segmentation to analyses: a probabilistic model for unsupervised morphology induction, in Proceedings of EACL, Valencia, Spain.
  • 15. Piotr BOJANOWSKI, Edouard GRAVE, Armand JOULIN, and Tomas MIKOLOV (2017), Enriching word vectors with subword information, Transactions of the Association for Computational Linguistics, 5:135-146, doi:10.1162/tacl_a_00051, https://aclanthology.org/Q17-1010.
  • 16. Rishi BOMMASANI, Kelly DAVIS, and Claire CARDIE (2020), Interpreting pretrained contextualized representations via reductions to static embeddings, in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 4758-4781, Association for Computational Linguistics, Online, doi:10.18653/v1/2020.acl-main.431, https://aclanthology.org/2020.acl-main.431.
  • 17. Olivier BONAMI and Denis PAPERNO (2018), Inflection vs. derivation in a distributional vector space, Lingue e linguaggio, 17(2):173-196.
  • 18. Olivier BONAMI and Jana STRNADOVÁ (2019), Paradigm structure and predictability in derivational morphology, Morphology, 29(2):167-197, ISSN 1871-5656, doi:10.1007/s11525-018-9322-6.
  • 19. Geert BOOIJ (1996), Inherent versus contextual inflection and the split morphology hypothesis, in Yearbook of Morphology 1995, pp. 1-16, Springer.
  • 20. Geert BOOIJ (2007), Inflection, in The Grammar of Words: An Introduction to Linguistic Morphology, Oxford University Press, doi:10.1093/acprof:oso/9780199226245.003.0005.
  • 21. R. D. BOSCHLOO (1970), Raised conditional level of significance for the 2× 2-table when testing the equality of two probabilities, Statistica Neerlandica, 24(1):1-9.
  • 22. Joan L. BYBEE (1985), Morphology: A study of the relation between meaning and form, John Benjamins, Amsterdam.
  • 23. Alexis CONNEAU, Kartikay KHANDELWAL, Naman GOYAL, Vishrav CHAUDHARY, Guillaume WENZEK, Francisco GUZMÁN, Edouard GRAVE, Myle OTT, Luke ZETTLEMOYER, and Veselin STOYANOV (2020), Unsupervised cross-lingual representation learning at scale, in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 8440-8451, Association for Computational Linguistics, Online, doi:10.18653/v1/2020.acl-main.747, https://aclanthology.org/2020.acl-main.747.
  • 24. Maria COPOT, Timothee MICKUS, and Olivier BONAMI (2022), Idiosyncratic frequency as a measure of derivation vs. inflection, Journal of Language Modelling, 10(2):193-240, doi:10.15398/jlm.v10i2.301, https://jlm.ipipan.waw.pl/index.php/JLM/article/view/301.
  • 25. Greville G. CORBETT (2010), Canonical derivational morphology, Word Structure, 3(2):141-155.
  • 26. Ryan COTTERELL and Hinrich SCHÜTZE (2018), Joint semantic synthesis and morphological analysis of the derived word, Transactions of the Association for Computational Linguistics, 6:33-48, doi:10.1162/tacl_a_00003, https://aclanthology.org/Q18-1003.
  • 27. William CROFT (2002), Typology and universals, Cambridge Textbooks in Linguistics, Cambridge University Press, 2 edition, doi:10.1017/CBO9780511840579.
  • 28. Anne CUTLER (1981), Degrees of transparency in word formation, Canadian Journal of Linguistics/Revue canadienne de linguistique, 26(1):73-77.
  • 29. Daniel DEUTSCH, John HEWITT, and Dan ROTH (2018), A distributional and orthographic aggregation model for English derivational morphology, in Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1938-1947, Association for Computational Linguistics, Melbourne, Australia, doi:10.18653/v1/P18-1180, https://aclanthology.org/P18-1180.
  • 30. Jacob DEVLIN, Ming-Wei CHANG, Kenton LEE, and Kristina TOUTANOVA (2019), BERT: Pre-training of deep bidirectional transformers for language understanding, in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171-4186, Association for Computational Linguistics, Minneapolis, Minnesota, doi:10.18653/v1/N19-1423, https://aclanthology.org/N19-1423.
  • 31. Wolfgang U. DRESSLER (1989), Prototypical differences between inflection and derivation, STUF – Language Typology and Universals, 42(1):3-10.
  • 32. Matthew S. DRYER (1989), Large linguistic areas and language sampling, Studies in Language. International Journal sponsored by the Foundation “Foundations of Language”, 13(2):257-292.
  • 33. Edouard GRAVE, Piotr BOJANOWSKI, Prakhar GUPTA, Armand JOULIN, and Tomas MIKOLOV (2018), Learning word vectors for 157 languages, in Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), European Language Resources Association (ELRA),
  • 34. Miyazaki, Japan, https://aclanthology.org/L18-1550.
  • 35. Joseph H. GREENBERG, editor (1966), Universals of language, M.I.T. Press, 2 edition.
  • 36. P. HACKEN (1994), Defining morphology: A principled approach to determining the boundaries of compounding, derivation, and inflection, Altertumswissenschaftliche Texte Und Studien, G. Olms Verlag, https://books.google.co.uk/books?id=E8mWh_6mRAcC.
  • 37. Zellig HARRIS (1954), Distributional structure, Word, 10(23):146-162.
  • 38. Martin HASPELMATH (2024), Inflection and derivation as traditional comparative concepts, Linguistics, 62(1):43-77, doi:doi:10.1515/ling-2022-0086, https://doi.org/10.1515/ling-2022-0086.
  • 39. Nabil HATHOUT and Fiammetta NAMER (2016), Giving lexical resources a second life: Démonette, a multi-sourced morpho-semantic network for French, in Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), pp. 1084-1091, European Language Resources Association (ELRA), Portorož, Slovenia, https://aclanthology.org/L16-1173.
  • 40. Nabil HATHOUT, Franck SAJOUS, and Basilio CALDERONE (2014), GLÀFF, a large versatile French lexicon, in Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14), pp. 1007-1012, European Language Resources Association (ELRA), Reykjavik, Iceland, http://www.lrec-conf.org/proceedings/lrec2014/pdf/58_Paper.pdf.
  • 41. Junxian HE, Graham NEUBIG, and Taylor BERG-KIRKPATRICK (2018), Unsupervised learning of syntactic structure with invertible neural projections, in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 1292-1302, Association for Computational Linguistics, Brussels, Belgium, doi:10.18653/v1/D18-1160, https://aclanthology.org/D18-1160.
  • 42. Valentin HOFMANN, Hinrich SCHÜTZE, and Janet PIERREHUMBERT (2020), A graph auto-encoder model of derivational morphology, in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 1127-1138, Association for Computational Linguistics, Online, doi:10.18653/v1/2020.acl-main.106, https://aclanthology.org/2020.acl-main.106.
  • 43. Zongliang HU, Kai DONG, Wenlin DAI, and Tiejun TONG (2017), A comparison of methods for estimating the determinant of high-dimensional covariance matrix, The International Journal of Biostatistics, 13(2):20170013, doi:10.1515/ijb-2017-0013.
  • 44. M. KASTHURI, S. Britto Ramesh KUMAR, and Souheil KHADDAJ (2017), PLIS: Proposed language independent stemmer for information retrieval systems using dynamic programming, in 2017 World Congress on Computing and Communication Technologies (WCCCT), pp. 132-135, doi:10.1109/WCCCT.2016.39.
  • 45. Diederik P. KINGMA and Jimmy BA (2015), Adam: A method for stochastic optimization, in Yoshua BENGIO and Yann LECUN, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, http://arxiv.org/abs/1412.6980.
  • 46. Bilal KIRKICI and Harald CLAHSEN (2013), Inflection and derivation in native and non-native language processing: Masked priming experiments on Turkish, Bilingualism: Language and Cognition, 16(4):776-791, doi:10.1017/S1366728912000648.
  • 47. Christa KÖNIG (2006), Marked nominative in Africa, Studies in Language.
  • 48. International Journal sponsored by the Foundation “Foundations of Language”, 30(4):655-732.
  • 49. Lukáš KYJÁNEK, Zdeněk ŽABOKRTSKÝ, Magda ŠEVČÍKOVÁ, and Jonáš VIDRA (2020), Universal Derivations 1.0, a growing collection of harmonised word-formation resources, The Prague Bulletin of Mathematical Linguistics, 2(115):333-348.
  • 50. Lior LAKS and Fiammetta NAMER (2022), Hebrewnette – a new derivational resource for non-concatenative morphology: Principles, design and implementation, The Prague Bulletin of Mathematical Linguistics, 118:25-53.
  • 51. Septina Dian LARASATI, Vladislav KUBOŇ, and Daniel ZEMAN (2011), Indonesian morphology tool (MorphInd): Towards an Indonesian corpus, in Cerstin MAHLOW and Michael PIOTROWSKI, editors, Systems and Frameworks for Computational Morphology, pp. 119-129, Springer Berlin Heidelberg, Berlin, Heidelberg, doi:10.1007/978-3-642-23138-4_8.
  • 52. Alessandro LAUDANNA, William BADECKER, and Alfonso CARAMAZZA (1992), Processing inflectional and derivational morphology, Journal of Memory and Language, 31(3):333-348.
  • 53. Vladimir LEVENSHTEIN (1966), Binary codes capable of correcting deletions, insertions and reversals, Soviet Physics Doklady, 10:707.
  • 54. Chu-Cheng LIN, Waleed AMMAR, Chris DYER, and Lori LEVIN (2015), Unsupervised POS induction with word embeddings, in Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1311-1316, Association for Computational Linguistics, Denver, Colorado, doi:10.3115/v1/N15-1144, https://aclanthology.org/N15-1144.
  • 55. Nikola LJUBEŠIĆ, Filip KLUBIČKA, Željko AGIĆ, and Ivo-Pavao JAZBEC (2016), New inflectional lexicons and training corpora for improved morphosyntactic annotation of Croatian and Serbian, in Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), pp. 4264-4270, European Language Resources Association (ELRA), Portorož, Slovenia, https://aclanthology.org/L16-1676.
  • 56. Donald G. MACKAY (1978), Derivational rules and the internal lexicon, Journal of Verbal Learning and Verbal Behavior, 17(1):61-71.
  • 57. Robert MALOUF, Farrell ACKERMAN, and Arturs SEMENUKS (2020), Lexical databases for computational analyses: A linguistic perspective, in Allyson ETTINGER, Gaja JAROSZ, and Joe PATER, editors, Proceedings of the Society for Computation in Linguistics 2020, pp. 446-456, Association for Computational Linguistics, New York, New York, https://aclanthology.org/2020.scil-1.52.
  • 58. Arya D. MCCARTHY, Christo KIROV, Matteo GRELLA, Amrit NIDHI, Patrick XIA, Kyle GORMAN, Ekaterina VYLOMOVA, Sabrina J. MIELKE, Garrett NICOLAI, Miikka SILFVERBERG, Timofey ARKHANGELSKIY, Nataly KRIZHANOVSKY, Andrew KRIZHANOVSKY, Elena KLYACHKO, Alexey SOROKIN, John MANSFIELD, Valts ERNŠTREITS, Yuval PINTER, Cassandra L. JACOBS, Ryan COTTERELL, Mans HULDEN, and David YAROWSKY (2020), UniMorph 3.0: Universal Morphology, in Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 3922-3931, European Language Resources Association, Marseille, France, https://aclanthology.org/2020.lrec-1.483.
  • 59. Tomas MIKOLOV, Ilya SUTSKEVER, Kai CHEN, Greg CORRADO, and Jeffrey DEAN (2013), Distributed representations of words and phrases and their compositionality, in Proceedings of the 26th International Conference on Neural Information Processing Systems – Volume 2, NIPS’13, p. 3111-3119, Curran Associates Inc., Red Hook, NY, USA.
  • 60. Karthik NARASIMHAN, Regina BARZILAY, and Tommi JAAKKOLA (2015), An unsupervised method for uncovering morphological chains, Transactions of the Association for Computational Linguistics, 3:157-167.
  • 61. Bruce OLIVER, Clarissa FORBES, Changbing YANG, Farhan SAMIR, Edith COATES, Garrett NICOLAI, and Miikka SILFVERBERG (2022), An inflectional database for Gitksan, in Proceedings of the Thirteenth Language Resources and Evaluation Conference, pp. 6597-6606, European Language Resources Association, Marseille, France, https://aclanthology.org/2022.lrec-1.710.
  • 62. Jeffrey PENNINGTON, Richard SOCHER, and Christopher MANNING (2014), GloVe: Global vectors for word representation, in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532-1543, Association for Computational Linguistics, Doha, Qatar, doi:10.3115/v1/D14-1162, https://aclanthology.org/D14-1162.
  • 63. David PERLMUTTER (1988), The split morphology hypothesis: Evidence from Yiddish, Theoretical Morphology, pp. 79-100.
  • 64. Tiago PIMENTEL, Josef VALVODA, Rowan Hall MAUDSLAY, Ran ZMIGROD, Adina WILLIAMS, and Ryan COTTERELL (2020), Information-theoretic probing for linguistic structure, in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 4609-4622, Association for Computational Linguistics, Online, doi:10.18653/v1/2020.acl-main.420, https://aclanthology.org/2020.acl-main.420.
  • 65. Frans PLANK (1994), Inflection and derivation, in The Encyclopedia of Language and Linguistics, pp. 1671-1679, Elsevier Science and Technology, Amsterdam.
  • 66. Shauli RAVFOGEL, Yanai ELAZAR, Jacob GOLDBERGER, and Yoav GOLDBERG (2020), Unsupervised distillation of syntactic information from contextualized word representations, in Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pp. 91-106, Association for Computational Linguistics, Online, doi:10.18653/v1/2020.blackboxnlp-1.9, https://aclanthology.org/2020.blackboxnlp-1.9.
  • 67. Rudolf ROSA and Zdeněk ŽABOKRTSKÝ (2019), Attempting to separate inflection and derivation using vector space representations, in Proceedings of the Second International Workshop on Resources and Tools for Derivational Morphology, pp. 61-70, Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics, Prague, Czechia, https://aclanthology.org/W19-8508.
  • 68. Rudolf ROSA and Zdenek ZABOKRTSKÝ (2019), Unsupervised lemmatization as embeddings-based word clustering, CoRR, abs/1908.08528, http://arxiv.org/abs/1908.08528.
  • 69. Jenny R. SAFFRAN, Richard N. ASLIN, and Elissa L. NEWPORT (1996), Statistical learning by 8-month-old infants, Science, 274(5294):1926-1928.
  • 70. Adriaan M. J. SCHAKEL and Benjamin J. WILSON (2015), Measuring word significance using distributed representations of words, Computing Research Repository, arXiv:1508.02297, http://arxiv.org/abs/1508.02297.
  • 71. Patrick SCHONE and Daniel JURAFSKY (2000), Knowledge-free induction of morphology using latent semantic analysis, in Fourth Conference on Computational Natural Language Learning and the Second Learning Language in Logic Workshop, https://aclanthology.org/W00-0712.
  • 72. Michael SILVERSTEIN (1986), Hierarchy of features and ergativity, in Features and Projections, pp. 163-232, De Gruyter Mouton, Berlin, Boston, doi:10.1515/9783110871661-008.
  • 73. Radu SORICUT and Franz OCH (2015), Unsupervised morphology induction using word embeddings, in Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1627-1637, Association for Computational Linguistics, Denver, Colorado, doi:10.3115/v1/N15-1186, https://aclanthology.org/N15-1186.
  • 74. Andrew SPENCER (2013), Lexical relatedness, Oxford University Press, Oxford.
  • 75. Pavol ŠTEKAUER (2015), 14. The delimitation of derivation and inflection, in Peter O. MÜLLER, Ingeborg OHNHEISER, Susan OLSEN, and Franz RAINER, editors, Volume 1 Word-Formation, pp. 218-235, De Gruyter Mouton.
  • 76. Lonny Alaskuk STRUNK (2020), A finite-state morphological analyzer for Central Alaskan Yup’Ik, University of Washington.
  • 77. Daniel SWINGLEY (2005), Statistical clustering and the contents of the infant vocabulary, Cognitive Psychology, 50(1):86-132.
  • 78. John SYLAK-GLASSMAN (2016), The composition and use of the universal morphological feature schema (UniMorph schema), https://unimorph.github.io/doc/unimorph-schema.pdf.
  • 79. Erik D. THIESSEN, Alexandra T. KRONSTEIN, and Daniel G. HUFNAGLE (2013), The extraction and integration framework: a two-process account of statistical learning, Psychological Bulletin, 139(4):792.
  • 80. Erik D. THIESSEN and Jenny R. SAFFRAN (2003), When cues collide: use of stress and statistical cues to word boundaries by 7-to-9-month-old infants, Developmental Psychology, 39(4):706.
  • 81. Susan P. THOMPSON and Elissa L. NEWPORT (2007), Statistical learning of syntax: The role of transitional probability, Language Learning and Development, 3(1):1-42.
  • 82. Hugo David Calderon VILCA, Flor Cagniy Cárdenas MARIÑÓ, and Edwin Fredy Mamani CALDERON (2012), Analizador morfólogico de la lengua Quechua basado en software libre Helsinkifinite-statetransducer (HFST).
  • 83. Ivan VULIĆ, Simon BAKER, Edoardo Maria PONTI, Ulla PETTI, Ira LEVIANT, Kelly WING, Olga MAJEWSKA, Eden BAR, Matt MALONE, Thierry POIBEAU, Roi REICHART, and Anna KORHONEN (2020), Multi-SimLex: A large-scale evaluation of multilingual and crosslingual lexical semantic similarity, Computational Linguistics, 46(4):847-897, doi:10.1162/coli_a_00391, https://aclanthology.org/2020.cl-4.5.
  • 84. Christian WARTENA (2013), Distributional similarity of words with different frequencies, in Proceedings of the 13th edition of the Dutch-Belgian information retrieval Workshop (DIR 2013), pp. 8-11, Hochschule Hannover.
  • 85. Adam WIEMERSLAGE, Arya D. MCCARTHY, Alexander ERDMANN, Garrett NICOLAI, Manex AGIRREZABAL, Miikka SILFVERBERG, Mans HULDEN, and Katharina KANN (2021), Findings of the SIGMORPHON 2021 shared task on unsupervised morphological paradigm clustering, in Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pp. 72-81.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a284b68e-2282-4d96-9114-5ee1ebff7d19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.