PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving optical and morphological properties of Mn-dopedZnO via Ar ion sputtering followed by high-temperature UHV annealing

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using the ultrasonic spray pyrolysis technique, pure (ZnO) and manganese (4at%)-doped zinc oxide (ZnMnO) thin films were synthesized and treated with Ar+ sputtering in the UHV (ultra-high vacuum) system. In this regard, XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy), PL (photoluminescence), and AFM (atomic force microscopy) techniques were applied to investigate the electronic and photonic properties of ZnO. XRD and XPS allowed us to identify the successful incorporation of Mn as a substitute for Zn, while PL and AFM images reveal a high tendency for crystalline grains on theZnMnO surface to aggregate to form small grains. However, bandgap narrowing, a redshift with considerable fluctuations in excitonic emission, and a perfect quenching of visible emission (400–640 nm) were observed. Investigations into defect-related emission in ZnMnO and ZnO compounds were conducted. The PL spectra of the prepared samples were measured and analyzed using Gaussian fitting. The PL of undoped ZnOexhibited an intense broad band with a peak at 550 nm. Two effects were shown to occur as a result of Mn doping: (i) a sharp quenching of self-activated PL with a progressive red-shift of the quenching’s spectral boundary; (ii) the appearance of a new emission band with a peak at 1.64 eV (756 nm), which dominates the PL spectrum and is noted in a band diagram; as well as a slight shift in the main line of ZnO, which is located at energy 3.275 eV (378.57nm).
Wydawca
Rocznik
Strony
325--338
Opis fizyczny
Bibliogr. 74 poz., rys., tab.
Twórcy
  • Laboratory of Energy and Smart Systems, Faculty of Science and Technology, University of Khemis Miliana 44225, Algeria
  • University of Khemis Miliana 44225, Algeria
  • University of Khemis Miliana 44225, Algeria
autor
  • Department of Physics 54147-Kampus Sakarya-Turkey
Bibliografia
  • [1] Kang Y, Yu F, Zhang L, Wang W, Chen S, Li Y. Review of ZnO-based nanomaterials in gas sensors. Solid State Ion. 2021;360: 115544. doi.org/10.1016/j.ssi.(2020).115544
  • [2] Bui DP, Pham MT, Tran HH, Nguyen TD, Cao TM, Pham VV. Revisiting the key optical and electrical characteristics in reporting the photocatalysis of semiconductors, ACS Omega. 2021;6:27379–86. doi:10.26434/chemrxiv-2021-bs8xg
  • [3] Bousmaha M, BezzerroukMA, Kharroubi B, Akriche A, Naceur R, Hattabi I, Sandjak-Eddine K. Enhanced photocatalysis by depositing ZnO thin film in the inner wall of glass tube. Optik. 2019;183:727–31. doi:10.1016/j.ijleo.2019.02.111
  • [4] Liu S, Zhong Q, Guo W, Zhang W, Ya Y, Xia Y. Novel Platycladusorientalis–shaped Fe-doped ZnO hierarchical nanoflower decorated with Ag nanoparticles for photocatalytic application. J. Alloys Compd. 2021; 880:160501. doi: 10.1016/j.jallcom.2021.160501
  • [5] Bezzerrouk MA, Bousmaha M, Hassan M, Akriche A, Kharroubi B, Naceur R. Enhanced methylene blue removal efficiency of SnO2 thin film using sonophotocatalytic processes, Opt. Mater. 2021;117: 111116. doi:10.1016/j.optmat.2021.111116
  • [6] Aadnan I, Zegaoui O, ElMragui A, Daou I, Moussout H, Esteves da Silva JCG. Structural, optical and photocatalytic properties of Mn doped ZnO nanoparticles used as photocatalysts for Azo-dye degradation under visible light. Catalysts. 2022;12:1382. doi.org/10.3390/catal1211138
  • [7] Klein A, Körber C, Wachau A, Säuberlich F, Gassenbauer Y, Harvey SP, Proffit DE, Mason TO. Transparent conducting oxides for photovoltaics: manipulation of fermi level, work function and energy band alignment. Materials. 2010;3:4892–914. doi:10.3390/ma3114892
  • [8] IShaheen I, Ahmad KS, Zequine C, Gupta RK, Thomas AG, Malik MA. Facile ZnO-based nanomaterial and its fabrication as a supercapacitor electrode: synthesis, characterization and electrochemical studies. RSC Adv. 2021; 11:23374, doi: 10.1039/d1ra04341b
  • [9] Jin C, Hao N, Xu Z, Trase I, Nie Y, Dong L, Closson A, Chen Z, Zhang JXJ. Flexible piezoelectric nanogenerators using metal-doped ZnO-PVDF films. Sens. Actuators A Phys. 2020;305:111912. doi.org/10.1016/j.sna.2020.111912
  • [10] Stara TR, Markevich IV. Influence of Mn doping on ZnO defect-related emission. Semicond Phys Quantum Electron Optoelectro. 2017;20(1):137–41. doi.org/10.15407/spqeo20.01.137
  • [11] Pradeev Raj K, Sadaiyandi K, Kennedy A, Sagadevan S, Chowdhury ZZ, Johan MRB, Aziz FA, Rafique RF, Thamiz Selvi R, Rathina Bala R. Influence of Mg Doping on ZnO Nanoparticles for Enhanced Photocatalytic Evaluation and Antibacterial Analysis. Nanoscale Res Lett. 2018 Aug 3;13(1):229. doi: 10.1186/s11671-018-2643-x.
  • [12] Hou Q, Liu Y. Effects of Co doping and point defect on the ferromagnetism of ZnO. J Supercond Nov Magn. 2019;32, 1135–42. doi:10.1007/s10948-018-4987-y
  • [13] Bedrouni M, Kharroubi B, Ouerdane A, Bouslama M, Caudano Y, Bensassi KB, Bousmaha M, Bezzerrouk MA, Mokadem A, Abdelkrim M. Effect of indium incorporation, stimulated by UHV treatment, on the chemical, optical and electronic properties of ZnO thin film. Opt. Mater. 2021;111:110560. doi.org/10.1016/j.optmat.2020.110560
  • [14] Guezzoul M, Bouslama M, Ouerdane A, Mokadem A, Kharroubi B, Bedrouni M, Abdelkrim A, Abdellaoui A, Bensassi KB, Baizid A, Halati MS. Morphological and optical properties of undoped and Cu-doped ZnO thin films submitted to UHV treatment. Appl Surf Sci. 2020;520:146302. doi: 10.1016/j.apsusc.2020.146302
  • [15] Nurfani E, Kesuma W, Lailani A, Anrokhi M, Kadja G, Rozana M, Sipahutar W, Arif M. Enhanced UV sensing of ZnO films by Cu doping. Opt Mater. 2021;114:110973. doi:10.1016/j.optmat.2021.110973
  • [16] Azizah N, Muhammady S, Purbayanto MAK, Nurfani E, Winata T, Sustini E, Widita R, Darma Y. Influence of Al doping on the crystal structure, optical properties, and photodetecting performance of ZnO film. Prog Nat Sci Mater Int. 2020;30:28–34. doi: 10.1016/j.pnsc.2020.01.006
  • [17] Sajjad M, Ullah I, Khan M, Khan J, Khan MY, Qureshi MT. Structural and optical properties of pure and copper doped zinc oxide nanoparticles. Results Physi 2018; 9:1301–9. doi: 10.1016/j.rinp.2018.04.010
  • [18] Kim D, Kim W, Jeon S, Yong K. Highly efficient UV-sensing properties of Sb-doped ZnO nanorod arrays synthesized by a facile, singlestep hydrothermal reaction. RSC Adv. 2017;7:40539. doi: 10.1039/c7ra07157d
  • [19] Abdelkrim M, Guezzoul M, Bedrouni M, Bouslama M, Ouerdane A, Kharroubi B. Effect of slight cobalt incorporation on the chemical, structural, morphological, optoelectronic, and photocatalytic properties of ZnO thin film. J. Alloys Compd. 2022;920:165703. doi.org/10.1016/j.jallcom.2022.165703
  • [20] Chen M, Liu P, He JH, Wang HL, Zhang H, Wang X, Chen R. Nanofiber template induced preparation of ZnO nanocrystal and its application in photocatalysis, Sci Rep. 2021;11:21196. doi.org/10.1038/s41598-021-00303-9
  • [21] Fathima N, Pradeep N, Balakrishnan VUJ. Growth and characterization of ZnO nanocones on flexible substrate by hydrothermal method. Mater Today Proc. 2019;9: 247–55. doi: 10.1016/j.matpr.2019.02.156
  • [22] Aravind A, Jayaraj M, ZnO-based dilute magnetic Ssemiconductors. In: Jayaraj MK, editor. Nanostructured metal oxides and devices. Singapore: Springer; 2020. p.233–69. doi: 10.1007/978-981-15-3314-3_8
  • [23] Pan F, Song C, Liu XJ, Yang YC, Zeng F. Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films. Mater Sci Eng R: Rep. 2008;62:1–35. doi: 10.1016/j.mser.2008.04.002
  • [24] RBaghdad R, Kharroubi B, Abdiche A, Bousmaha M, Bezzerrouk MA, Zeinert A, Marssi ME, Zellama K. Mn doped ZnO nanostructured thin films prepared by ultrasonic spray pyrolysis method. Superlattices Microstruct. 2012;52:711–21. doi.org/10.1016/j.spmi.2012.06.023
  • [25] Gallegos MV, Peluso MA, Thomas H, Damonte LC, Sambeth JE. Structural and optical properties of ZnO and manganese-doped ZnO, J. Alloys Compd. 2016;689:416–24. doi: 10.1016/j.jallcom.2016.07.283
  • [26] Alsmadi AKM, Salameh B, Shatnawi M. Influence of oxygen defects and their evolution on the Ferromagnetic ordering and band gap of Mn-doped ZnO films. J Phys Chem C. 2020;124:16116–26, doi.org/10.1021/acs.jpcc.0c04049
  • [27] Ilyas U, LeejP, Tan TL, Chen R, Anwar AW, Zhang S, Sun HD, Rawat RS. Temperature-dependent stoichiometric alteration in ZnO:Mn nanostructured thin films for enhanced ferromagnetic response. Appl Surf Sci. doi.org/10.1016/j.apsusc.2016.06.138
  • [28] Jing C, Jiang Y, Bai W, Chu J, Liu A. Synthesis of Mn-doped ZnO diluted magnetic semiconductors in the presence of ethyl acetoacetate under solvothermal conditions. J Magn Magn Mater. 2010;322:2395–400. doi:10.1016/j.jmmm.2010.02.044
  • [29] Panda J, Sasmal L, Nath TK. Magnetic and optical properties of Mn doped ZnO vertically aligned nanorods synthesized by hydrothermal technique. AIP Adv. 2016;6:035118. doi.org/10.1063/1.4944837
  • [30] Rajendran K, Banerjee S, Senthilkumaar S, Chini TK, Sengodan V. Influence of Mn doping on the microstructure and optical property of ZnO. Mater. Sci. Semicond. 2008;11:6–12. doi:10.1016/j.mssp.2008.04.005
  • [31] Hajiashrafi S, Motakef Kazem I N. Preparation and evaluation of ZnO nanoparticles by thermal decomposition of MOF-5. Heliyon 2019;5:1–6. doi: 10.1016/j.heliyon.2019.e02152.
  • [32] Mikailzade F, Türkan H, Önal F, Zarbali M, Göktaş A, Tumbul A. Structural and magnetic properties of polycrystalline Zn1–xMnxO films synthesized on glass and p-type Si substrates using Sol–Gel technique. Appl Phys A. 2021;127:1–8. doi: 10.1007/s00339-021-04519-4
  • [33] Shewale P, Lee S, Yu S. UV sensitive pulsed laser deposited ZnO thin films: influence of growth temperature. J Alloys Compd. 2018;744:849–58. doi: 10.1016/j.jallcom.2018.02.141
  • [34] Pereira dos Santos CI, De Giovanni Rodrigues A, Franco de Godoy MP. Growth and characterization of Mn-doped ZnO thin films. 18th Brazilian Workshop on Semiconductor Physics BWSP. 2017. doi: 10.17648/bwsp-2017-70009
  • [35] Wang J, Mei Y, Lu X, Fan X, Kang D, Xu P, Tan T. Effects of annealing pressureand Ar+ sputtering cleaning on Al-doped ZnO films. Appl Surf Sci. 2016;387:779–83. doi.org/10.1016/j.apsusc.2016.06.069
  • [36] Sun LJ, He DK, Xu SQ, Zhong Z, Wu XP, Lin BX, Fu ZX, Effect of hightemperature annealing on conductiontype ZnO films prepared by direct-current magnetron sputtering. Chin Phys Lett. 2010;27(12):126802. doi: 10.1088/0256-307X/27/12/126802
  • [37] Chang HY, Lin WC, Chu PC, Wang YK, Sogo M, Iida SI, Peng CJ, Miyayama T. Xray photoelectron spectroscopy equipped with gas cluster ion beams for evaluation of the sputtering behavior of various nanomaterials. ACS Appl Nano Mater. 2022. doi.org/10.1021/acsanm.2c00202
  • [38] Zaiter A, Michon A, Nemoz N, et al. Crystalline Quality and Surface Morphology Improvement of Face-to-Face Annealed MBE-Grown AlN on h-BN, Materials. 2022; 15(23):8602. doi.org/10.3390/ma1523860
  • [39] ArzuÇolak, HW, Zandvliet HJW, Poelsema B. Surface adhesion and its dependence on surface roughness and humidity measured with a flat tip. Appl Surf Sci. 2012;69:6938. doi.org/10.1016/j.apsusc.2012.03.138
  • [40] Yang S, Yan B, Lu L, Zeng K. Grain boundary effects on Li-ion diffusion in a Li1.2Co0.13Ni0.13MnO.54O2 thin film cathode studied by scanning probe microscopy technique. RSC Adv. 2016;6:94000. doi: 10.1039/c6ra17681j
  • [41] Pathak CS. Application of atomic force microscopy in organic and perovskite photovoltaics. In: Pathak CS, Kumar S, editors. Recent developments in atomic force microscopy and raman spectroscopy for materials characterization. book London, UK: IntechOpen; 2021. doi: 10.5772/intechopen.98478
  • [42] Mikhailov YM, Aleshin VV, Kolesnikova AM, Kovalev DY, Ponomarev VI. Flameless combustion synthesis of Ni and Ag nanoparticles in ballasted systems: atime-resolved X-ray diffraction study. Propellants Explos Pyrotech. 2015;40:88. doi: 10.1002/prep.201400049
  • [43] Murata K, Chihara H, Tsuchiyama A, Koike C, Takakura T, Noguchi T, Nakamura T. Crystallization experiments on amorphous silicates with chondritic composition: Quantitative formulation of the crystallization. Astrophys J. 2007;668:285. doi:10.1086/521017
  • [44] Niedermaier I, Kolbeck C, Steinrück HP, Florian M. Dual analyzer system for surface analysis dedicated for angle-resolved photoelectron spectroscopy at liquid surfaces and interfaces. Rev Sci Instrum. 2016;87:045105. doi.org/10.1063/1.4942943
  • [45] Motaung DE, Kortidis I, Papadaki D, Nkosi SS, Mhlongo GH, Wesley-Smith J, Malgas GF, Mwakikunga BW, Coetsee E, Swart HC, Kiriakidis G, Ray SS. Defect-inducedmagnetism in undoped and Mn-doped wide band gap zinc oxidegrown by aerosol spray pyrolysis. Appl Surf Sci. 2014;311:14–26. doi: 10.1016/j.apsusc.2014.04.183
  • [46] Wang XL, Luan CY, Shao Q, Pruna A, Leung CW, Lortz R, Zapien JA, Ruotolo A. Effect of the magnetic order onthe room-temperature band-gap of Mn-doped ZnO thin films. Appl Phys Lett. 2013;102:102112. doi: 10.1063/1.4795797
  • [47] Eckelt F, Rothweiler P, Braun F, Voss L, AnkicaŠari, MV, Lützenkirchen-Hecht D. In situ observation of ZnO nanoparticle formation by a combination of time-resolved X-ray absorption spectroscopy and X-ray diffraction. Materials. 2022;15:8186. doi.org/10.3390/ma15228186
  • [48] Ahmed N, Majid A, Khan MA, Rashidi M, Umar ZA, Baig MA. Synthesis and characterization of Zn/ZnO microspheres on indented sites of silicon substrate. Mater Sci-Pol. 2018;36(3):501–8. doi: 10.2478/msp-2018-005
  • [49] Sahu S, Samanta PK. Peak profile analysis of X-ray diffraction pattern of zinc oxide nanostructure, J Nano Electron Phys. 2021;13:1–4. doi:10.21272/jnep.13(5).05001
  • [50] Das A, Wary RR, Nair RG. Mn-doped ZnO, role of morphological evolution on enhanced photocatalytic performance. Energy Rep. 2020;6:737–41. doi.org/10.1016/j.egyr.2019.11.148
  • [51] Rekha K, et al. Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Phys B: Condensed Matter 2010405(15):3180–5. doi: 10.1016/j.physb.2010.04.042
  • [52] Gencer H, Goktas A, Gunes M, Mutlu H, Atalay S. Electrical transport and magnetoresistance properties of La0.67Ca0.33MnO3 film coated on pyrex glass substrate. Int J Mod Phys B. 2008;22:497–506. doi: 10.1142/S0217979208038776
  • [53] Vishwaroop R, Mathad SN. Synthesis, structural, WH plot and size-strain analysis of nano cobalt doped MgFe2O4 ferrite. Sci Sinter. 2020;52:349. doi: 10.2298/SOS2003349V
  • [54] Salameh B, Alsmadi A, Shatnawi M. Effects of Co concentration and annealingon the magnetic properties of Co-doped ZnO films: role of oxygen vacancies on theferromagnetic ordering, J. Alloys Compd. 2020;835:155287. doi: 10.1016/j.jallcom.2020.155287
  • [55] Tarwal N, Gurav K, Kumar TP, Jeong Y, Shim H, Kim I, Kim J, Jang J, Patil P. Structure, X-ray photoelectron spectroscopy and photoluminescence investigations of the spray deposited cobalt doped ZnO thin films. J Anal Appl Pyrolysis. 2014;106:26–32. doi: 10.1016/j.jaap.2013.12.005
  • [56] Toloman D, Mesaros A, Popa A, Raita O, Silipas TD, Vasile BS, Pana O, Giurgiu LM. Evidence by EPR of ferromagnetic phase in Mn-doped ZnO nanoparticles annealed at different temperatures. J. Alloys Compd. 2013;551:502–7. doi: 10.1016/j.jallcom.2012.10.183
  • [57] Kasim MF, Darman AKAB, Yaakob MK, Badar N, Kamarulzaman N. Experimental and first-principles DFT studies on the band gap behaviours of microsized and nanosized Zn(1-x)MnxO materials. Phys Chem Chem Phys. 2019;21:19126–19146. doi: 10.1039/C9CP01664C
  • [58] Ianhez-Pereira C, Onofre YJ, Magon CJ, et al. The interplay between Mn valence and the optical response of ZnMnO thin films. Appl Phys A. 2020;126:337. doi.org/10.1007/s00339-020-03511-8
  • [59] Guo D, Wu Z, An Y, Li X, Guo X, Chu X, Sun C, Lei M, Li L, Cao L, Li P, Tang W. Room temperature ferromagnetism in (Ga1-x Mnx)2O3 epitaxial thin films. J Mater Chem C. 2015;3:1830–4. doi.org/10.1039/C4TC02833C
  • [60] Ramírez A, Hillebrand P, Stellmach D, May MM, Bogdanoff P, Fiechter S. Evaluation of MnOx, Mn2 O3, and Mn3O4 electrodeposited films for the oxygen evolution reaction of water. J Phys Chem C. 2014;118:14073–81. doi.org/10.1021/jp500939d
  • [61] Yang S, Zhang Y. Structural, optical and magnetic properties of Mn-doped ZnO thin films prepared by Sol-Gel method. J Magn Magn Mater. 2013;334:52–8. doi: 10.1016/j.jmmm.2013.01.026
  • [62] Gao Q, Dai Y, Li C, Yang L, Li X, Cui C. Correlation between oxygen vacancies and dopant concentration in Mn-doped ZnO nanoparticles synthesized by co-precipitation technique. J. Alloys Compd. 2016;684:669–76. doi: 10.1016/j.jallcom.2016.05.227
  • [63] Velavan R, Balakrishnan G, Batoo KM, Raslan EH. Synthesis and characterization of pure and manganese (Mn) doped zinc oxide (ZnO) nanocrystallites for applications. J Civil Environ Eng. 2021;11:1–4
  • [64] Wang XL, Luan CY, Shao Q, Pruna A, Leung CW, Lortz R, Zapien JA, Ruotolo A. Effect of the magnetic order on the room-temperature band-gap of Mn-doped ZnO thin films. Appl Phys Lett. 2013;102:102112. doi: 10.1063/1.4795797
  • [65] Zeng H, Duan G, Li Y, Yang S, Xu X, Cai W. Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Adv. Funct. Mater. 2010;20:561–72. doi: 10.1002/adfm.200901884
  • [66] Bensassi KB, et al. A comparative study of un-doped ZnO and in doping ZnO thin films with various concentrations, subjected to appropriate UHV treatment and characterized by sensitive spectroscopy techniques XPS, AES, reels, and PL. Ann W Univ Timisoara-Phys. 2022;64(1):1–21. doi: 10.2478/awutp-2022-0001
  • [67] Haiping H, et al. Extraction of the surface trap level from photoluminescence: a case study of ZnO nanostructures. Phys Chem Chem Phys. 2011;13(33):14902. doi: 10.1039/c1cp21527b
  • [68] Iribarren A, et al. Elucidating room-temperature optical transitions in annealed ZnO nanoparticles synthesized from an aqueous method. Mater Res Expr. 2019;6(10):105048. doi: 10.1088/2053-1591/ab3865
  • [69] Djurisic AB, Choy WCH, Roy VAL, Leung YH, Kwong CY, Cheah KW, Gundu Rao TK, Chan WK, Lui HF, Suryu C. Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures. Adv Func Mater. 2004;14:856. doi: 10.1002/adfm.200305082
  • [70] Mhlongo GH, et al. Room temperature ferromagnetism and gas sensing in ZnO nanostructures: influence of intrinsic defects and Mn, Co, Cu doping. Appl Surf Sci. 2016;390:804–15. doi: 10.1016/j.apsusc.2016.08.138
  • [71] Xu Y, et al. Passivation effect on ZnO films by SF6 plasma treatment. Crystals. 2019;9(5):236. doi: 10.3390/cryst9050236
  • [72] Lee SH, et al. Inorganic nano light-emitting transistor: p-type porous silicon nanowire/n-type ZnO nanofilm. Small. 2016;12(31):4222–8. doi: 10.1002/smll.201601205
  • [73] Djurišić AB, et al. ZnO nanostructures: growth, properties and applications. J Mater Chem. 2012;22(14):6526–35. doi.org/10.1039/C2JM15548F
  • [74] Fernando S, Nilius N, Freund HJ. STM luminescence spectroscopy of intrinsic defects in ZnO (0001) thin films. J Phys Chem Lett. 2013;4(22):3972–6. doi: 10.1021/jz401823c
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a27ff2fe-6a43-4387-9ff2-4c3f0336fcbf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.