Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wpływ pyłu marmurowego i włókna szklanego na ekspansywną glebę
Języki publikacji
Abstrakty
India shares a significant production of glass fiber and marble wastes in the world, which poses a big disposal problem. This study assesses the suitablility of glass fiber and marble dust to enhance the behaviour of expansive soil. The Atterberg’s limits and plasticity index improves by mixing marble dust into the soil. Whereas, the effect of glass fiber on the Atterberg’s limit is not found to be encouraging. The shear strength increases with the addition of marble dust as well as glass fibres. The effect of glass fiber on strains corresponding to peak stress is significantly higher than the marble dust. The strength of fiber-reinforced soil initially increases with the addition of marble dust, to the certain extent, beyond with it decreases. The effect of marble dust on variation in peak stress and corresponding strains is fibre-reinforced soil is found to be almost opposite. The optimum quantity of marble dust and glass fiber is found to be 10%-15% and 3%, respectively.
Gleby ekspansywne to gleby, które mają zdolność kurczenia się i / lub pęcznienia, a tym samym zmiany objętości, w zależności od zmian wilgotności. Utylizacja odpadów przemysłowych to duży problem w Indiach. Obecnie wiele produktów odpadowych stało się popularnymi materiałami konstrukcyjnymi. W niniejszej pracy oceniano przydatność zbrojenia włóknem szklanym do poprawy wytrzymałości gruntu ekspansywnego. Ponadto określa się również wpływ pyłu marmurowego na grunt wzmocniony włóknami. Limity Atterberga i wskaźnik plastyczności poprawiają się poprzez mieszanie pyłu marmurowego z glebą. Natomiast wpływ włókna szklanego na granicę Atterberga nie jest zachęcający. Wytrzymałość na ścinanie wzrasta wraz z dodatkiem pyłu marmurowego oraz włókien szklanych. Jednak wpływ włókna szklanego jest relatywnie bardziej zauważalny w porównaniu z pyłem marmurowym. Stwierdzono, że optymalna ilość pyłu marmurowego i włókna szklanego wynosi odpowiednio 15% i 3%. W przypadku włókna szklanego wytrzymałość na ściskanie i odpowiednie odkształcenie wzrastają odpowiednio o 55–58% i 700%. W gruncie zbrojonym włóknem wytrzymałość początkowo wzrasta wraz z dodatkiem pyłu marmurowego, do pewnego stopnia, po przekroczeniu której maleje. Stwierdzono, że wpływ pyłu marmurowego na zmienność szczytowych naprężeń i odpowiadających im odkształceń gleby wzmocnionej włóknami jest prawie przeciwny.
Czasopismo
Rocznik
Tom
Strony
111--118
Opis fizyczny
Bibliogr. 37 poz., rys., tab., zdj.
Twórcy
autor
- Institute of Infrastructure Engineering, Ahmedabad India, 382427
autor
- Institute of Infrastructure Engineering, Ahmedabad India, 382427
autor
- Institute of Infrastructure Engineering, Ahmedabad India, 382427
Bibliografia
- 1. Acchar, W., Vieira, F. A., & Hotza, D. (2006). Effect of marble and granite sludge in clay minerals, Materials Science and Engineering: A, 419(1-2), 306-309. dot.org/10/1016/j.msea.2006.01.021
- 2. Agarwal, R., Chaudhary, M., and Singh, J. (2015). Waste management initiatives in India for human wellbeing. European Scientific Journal., pp. 105-127.
- 3. Agrawal, V., and Gupta, M. (2011). Expansive soil stabilization using marble dust. International Journal of Earth Sciences and Engineering, 4(6), 59-62.
- 4. Al-Akhras, N. M., Attom, M. F., Al-Akhras, K. M., & Malkawi, A. I. H. (2008). Influence of fibers on swelling properties of clayey soil. Geosynthetics International, 15(4), 304-309. doi.org/10.1680/gein.2008.15.4.304
- 5. Al-Rawas, A. A., & Qamaruddin, M. (1998). Construction problems of engineering structures founded on expansive soils and rocks in northern Oman. Vuilding and Envurnment, 33(2-3), 159-171. doi.org/10.1016/S0360-1323(97)00048-6
- 6. Asadollahi, F., and Dabiri, R. (2017). Effects of Glass Fiber Reinforced Polymer on Geotechnical Properties of Clayey Soil. Journal of Structural Engineering and Geo-Techniques, 7(2), 73-83.
- 7. Chadha, M. S., Arankalle, V. A., Jadi, R. S., Joshi, M. V., #akare, J. P., Mahadev, P. V. M., and Mishra, A. C. (2005). An outbreak of Chandipura virus encephalitis in the eastern districts of Gujarat state, India. #e American journal of tropical medicine and hygiene, 73(3), 566-570.
- 8. Davini, P. (2000). Investigation into the desulphurization properties of by-products of the manufacture of white marbles of northern Tuscany. Fuel, 79, pp. 1363–1369.
- 9. Fang, L. I. U., Hong, S. U. N., and Xiu-run, G. E. (2011). Glass Fiber-Reinforced Sand Studied by Triaxial Experiments . Journal of Shanghai Jiaotong University, 5
- 10. Gurbuz, A., 2015. Marble powder to stabilise clayey soils in sub-based for road construction. Road Mater. Pavement Design 16(2), 481-492. doi.org/10.1080/14680629.2015.1020845
- 11. Hussein, S. A., & Ali, H. A. (2019) Stabilization of expansive soils using polypropylene fiber. Civil Engineering Journal, 5(3), 624-635. doi.org/10.28991/cej-2019-03091274.
- 12. Hwang, E. H., Ko, Y. S., Jeon, J. K. (2008). Effect of Polymer Cement Modifiers on Mechanical and Physical Properties of Polymer-Modified Mortar Using Recycled Artificial Marble Waste Fine Aggregate Journal of Industrial and Engineering Chemistry 14, pp. 265-271.
- 13. Ikeagwuani, C. C., and Nwonu, D. C. (2019). Emerging trends in expansive soil stabilization; a review. Journal of Rock Mechanics and Geotechnical Engineering, 11(2), 423-440.
- 14. Indian Standard IS : 2720 ( Part 10) - 1973 Methods of test for soils Part 10 Deternlnatlon ofunconfined compressive strength. India: BIS, 2006
- 15. Indian Standard IS : 2720 ( Part XL) - 1977 Methods of test for soils Part xl deternlnatlon of free swell Index of soils. India: BIS, 2002.
- 16. Indian Standard, IS: 2720 (Part-V) -1985 (2006). Methods of test for soils: Part 5 Determination of liquid and plastic limit. India: Bureau of Indian Standards, 2006.
- 17. Indian Standard, IS: 2720 (Part-VI)-1985 (2006). Methods of test for soils: Part 6 Determination of shrinkage factors. India: Bureau of Indian Standards.
- 18. Indian Standard, IS: 2720 (Part-VII) -1980 (2011). Methods of test for soils: Part 7 Determination of water content-dry density relation using light compaction. India: BIS, 2011.
- 19. Indian Standard, IS: 4332 (Part-III) - 1967 Edition 11 (2010). Methods of test for stabilized soils: part 3 test for determination of moisture content dry density relation for stabilized soil. India: BIS, 2010.
- 20. Karasahin, M., and Terzi, S. (2007). Evaluation of marble waste dust in the mixture of asphaltic concrete. Construction and Building Materials pp. 616–620. doi.org/10.1016/j.conbuldmat.2005.12.001
- 21, Letcher, T. M., and Vallero, D. A. (Eds.). (2019). Waste: A handbook for management. Academic Press.
- 22.Palaniappan, K. A. and Stalin, V. K. (2009) Utility effect of wastes in problematic soils. International Journal of Engineering Research and Industrial Applications, 2(1), 313-321.
- 23. Parihar, N. S. and Gupta, A. K. (2020). Chemical stabilization of expansive soil using liming leather waste ash. International Journal of Geotechnical Engineering. 1-14. /doi.org/10.1080/19386362.2020.1775357.
- 24. .Sabat, A. K., and Nanda, R. P. (2011). Effect of marble dust on strength and durability of Rice husk ash stabilised expansive soil. International Journal of Civil and Structural Engineering, 1(4), 939-948.
- 25. Saboya, F., Xavier, G.C., and Alexandre, J. (2007). !e use of the powder marble by-product to enhance the properties of brick ceramic. Construction and Building Materials 21, pp. 1950-1960.
- 26. Saha, H. S. & Bhowmik, D. (2018). Effect of Glass Fiber on Shear Strength of Soil. In Key Engineering materials (Vol. 775, pp. 603-609). Trans Tech Publications Ltd. doi.rog/10.4028/www.scientific.net/KEM.775.603
- 27. Sarkar, R., Das, S.K., Mandal, P.K., Maiti, H.S. (2006). Phase and microstructure evolution during hydrothermal solidification of clay-quartz mixture with marble dust source of reactive lime. Journal of the European Ceramic Society, 26, pp. 297–304.
- 28. Sharma, V., Vinayak, H. K. & Marwaha, B. M. (2015). Enhancing compressive strength for soil using natural fibers. Construction and Building Materials, 93. 943-949. doi.org/10.1016/j.conbuildmat.2015.05.065
- 29. Shukla, R. P., and Parihar, N. S. (2016). Stabilization of black cotton soil using micro-fine slag. Journal of the Institution of Engineers (India): Series A, 97(3), 299-306.
- 30. Shukla, R.P, Parihar, N., Tiwari, R.P. and Agrawal, B.K. (2014), Black cotton soil modification using sea salt. Electronic Journal of Geotechnical Engineering, 19, 8807-8816.
- 31. Shukla, R. P., Parihar, N. S, and Gupta, A. K. (2016). The effect of geotextiles on low plastic sandy clay. 6th Asian Regional Conference on Geosynthetics - Geosynthetics for Infrastructure Development, 8-11 November 2016, New Dehli, India, 25-259.
- 32. Syed, M., GuhaRay, A., Agarwal, S., and Kar, A. (2020). Stabilization of Expansive Clays by Combined Effects of Geopolymerization and Fiber Reinforcement. Journal of the Institution of Eng. (India): Series A, 101(1), 163-178.
- 33. Syed, M., GuhaRay, A., Agarwal, S. and Kar, A. (2020). Stabilization of expandive clays by combined effects of geo-polymerization and fiber reinforcement. Journal of The Institution of Eng. (India): Series A, 101(1), 163-178, doi.org/10.1007/s400030-019-00418-3
- 34. Tang, C. S., Wang, D. Y., Cui, Y. J., Shi, B., and Li, J. (2016). Tensile strength of fiber-reinforced soil. Journal of Materials in Civil Engineering, 28(7), 04016031.
- 35. Tang, C., Shi, B., Gao, W., Chen, F., and Cai, Y. (2007). Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes, 25(3), 194-202.
- 36. Wong R.C.K. (1998). Swelling and softening behavior of La Biche Shale. Can. Geotech. J. 35(2), 206–221.
- 37. Yin, Y., and Yu, X. J. (2009). Research on applying glass fiber cement soil to strengthen soft soil subgrade. In Recent Advancement in Soil Behavior, in Situ Test Methods, Pile Foundations, and Tunneling: Selected Papers from the 2009 GeoHunan International Conference (pp. 7-13).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a27faeca-415b-4f79-bbda-2c331d5f351b