Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Fifth-generation (5G) technology is currently developing in mobile networks. The civilian 3rd Generation Partnership Project (3GPP) standard is the basis for this implementation. Higher throughput, network capacity, user density, and lower latency are the main advantages offered by 5G over Long Term Evolution (LTE) and older standards. For this reason, these advantages are increasingly recognized in critical mission and military solutions. However, the 5G technology utilization in military equipment requires a deep analysis of the 3GPP standard, especially regarding technological gaps, security, and use cases. This is particularly important in using communication equipment during armed conflicts. Such equipment must be characterized by greater security and reliability than civilian equipment. Currently, work and analyses in this area are realized by the European Defence Agency (EDA), North Atlantic Treaty Organization (NATO) Communications and Information Agency (NCIA), Allied Command Transformation (ACT), and NATO Science and Technology Organization (STO). In the Information Systems Technology (IST) Panel of the NATO STO, the research task group (RTG) "IST-187-RTG on 5G Technologies Application to NATO Operations" is working on this topic. This paper presents exemplary 5G use cases in the navy. We indicate potential advantages, problems, and technological gaps that should be solved before implementing 5G technology in naval systems.
Rocznik
Tom
Strony
595--603
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
- Military University of Technology, Warsaw, Poland
autor
- Military University of Technology, Warsaw, Poland
autor
- Military University of Technology, Warsaw, Poland
autor
- Military University of Technology, Warsaw, Poland
autor
- Military University of Technology, Warsaw, Poland
Bibliografia
- [1] R. Vannithamby and S. Talwar, Eds., Towards 5G: Applications, requirements and candidate technologies. Chichester, West Sussex, UK: Wiley, 2017.
- [2] M. Sauter, From GSM to LTE‐Advanced Pro and 5G: An introduction to mobile networks and mobile broadband, 3rd ed. Hoboken, NJ, USA: Wiley, 2017.
- [3] ITU‐R, “Recommendation ITU‐R M.2083‐0: IMT vision –Framework and overall objectives of the future development of IMT for 2020 and beyond,” International Telecommunication Union (ITU), Geneva, Switzerland, Rec. ITU‐R M.2083‐0, Sep. 2015.
- [4] D. Zmysłowski, J. M. Kelner, and P. Falkowski‐Gilski, “Mobile networks’ analysis in terms of QoS performance assessment,” in 2022 19th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (EAI MobiQuitous), Pittsburgh, PA, USA: EAI, Nov. 2022.
- [5] J. Mongay Batalla, S. Sujecki, J. Oko, and J. M. Kelner, “Cost‐effective measurements of 5G radio resources allocation for telecom market regulator’s monitoring,” in 2022 19th ACM International Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor and Ubiquitous Networks (PE‐WASUN), Montreal, QC, Canada: Association for Computing Machinery, Oct. 2022, pp. 83–90. doi: 10.1145/3551663.3558684.
- [6] 3GPP, “3GPP — Third Generation Partnership Project,” Sep. 2014. http://www.3gpp.org/.
- [7] J. F. Harvey, M. B. Steer, and T. S. Rappaport, “Exploiting high millimeter wave bands for military communications, applications, and design,” IEEE Access, vol. 7, pp. 52350–52359, 2019, doi: 10.1109/ACCESS.2019.2911675.
- [8] P. Skokowski and K. Malon, “5G technology application for increasing soldiers’ survival on the battlefield,” in 2021 37th International Business Information Management Conference (IBIMA), Cordoba, Spain: IBIMA Publishing, May 2021, pp. 4712–4715. [Online]. Available: https://ibima.org/accepted‐paper/5gtechnology‐ application‐for‐increasing‐soldiers‐survivalon‐ the‐battlefield/.
- [9] M. Kryk, K. Malon, and J. M. Kelner, “Propagation attenuation maps based on parabolic equation method,”Sensors, vol. 22, no. 11, Art. no. 11, Jan. 2022, doi: 10.3390/s22114063.
- [10] P. Skokowski et al., “Jamming and jamming mitigation for selected 5G military scenarios,” Procedia Computer Science, vol. 205, pp. 258–267, Jan. 2022, doi: 10.1016/j.procs.2022.09.027.
- [11] A. Padmanabhan, “3GPP Release,” Devopedia, Oct. 23, 2022. https://devopedia.org/3gpp‐release (accessed Mar. 20, 2023).
- [12] I. Rahman et al., “Toward 5G Advanced: Overview of 3GPP Releases 17 & 18,” Ericsson Technology Review, Oct. 13, 2021. https://www.ericsson.com/en/reports‐andpapers/ericsson‐technology‐review/articles/5gevolution‐ toward‐5g‐advanced (accessed Mar. 20, 2023).
- [13] S. Kinney, “What will be included in 5G Advanced Release 18?,” RCR Wireless News, Jan. 13, 2022. https://www.rcrwireless.com/20220113/5g/what‐will‐beincluded‐ in‐5g‐advanced‐release‐18 (accessed Mar. 20, 2023).
- [14] “5G strategy for Poland,” [in Polish: “Strategia 5G dla Polski”] Polish Ministry of Digital Affairs, Warsaw, Poland, Jan. 2018. [Online]. Available: https://www.gov.pl/documents/31305/436699/Strategia+5G+dla+Polski.pdf/0cd08029‐2074‐be13‐21c8‐ fc1cf09629b0 (accessed Mar. 20, 2023).
- [15] A. Gupta and R. K. Jha, “A survey of 5G network: Architecture and emerging technologies,” IEEE Access, vol. 3, pp. 1206–1232, 2015, doi: 10.1109/ACCESS.2015.2461602.
- [16] N. Panwar, S. Sharma, and A. K. Singh, “A survey on 5G: The next generation of mobile communication,” Physical Communication, vol. 18, pp. 64–84, Mar. 2016, doi: 10.1016/j.phycom.2015.10.006.
- [17] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless networks: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp. 1617–1655, 2016, doi: 10.1109/COMST.2016.2532458.
- [18] Q.‐U.‐A. Nadeem, A. Kammoun, and M.‐S. Alouini, “Elevation beamforming with full dimension MIMO architectures in 5G systems: A tutorial,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3238–3273, 2019, doi: 10.1109/COMST.2019.2930621.
- [19] H. Ji et al., “Overview of full‐dimension MIMO in LTEAdvanced Pro,” IEEE Communications Magazine, vol. 55, no. 2, pp. 176–184, Feb. 2017, doi: 10.1109/MCOM.2016.1500743RP.
- [20] S. Palczewski, “Breakthrough in 5G case in Poland. Consultation process of auction documentation has started,” [in Polish: “Przełom w sprawie 5G w Polsce.Rusza proces konsultacji dokumentacji aukcyjnej”]CyberDefence24.pl, Dec. 20, 2022. https://cyberdefence24.pl/polityka‐i‐prawo/przelom‐wsprawie‐ 5g‐w‐polsce (accessed Mar. 20, 2023).
- [21] V. Conan et al., “5G technologies for defence,” EDA CapTech Information, White paper 1.0, Jan. 2021.
- [22] “European 5G leaders join forces with Europe’s defence industry in 5G COMPAD,” 5G COMPAD, Jan. 19, 2023. https://5gcompad.eu/press‐release/europes‐defenceindustry‐in‐5g‐compad/ (accessed Mar. 20, 2023).
- [23] A. Soomro, S. BayerAta, L. Durak Ata, D. Holtzer, D. Küçükyavuz, and M. Tschauner, “5G technologies: Adefense perspective,” STO Technical Report IST‐ET‐096,2018.
- [24] L. Bastos, G. Capela, and A. Koprulu, “Potential of 5G technologies for military application,” NATO Communications and Information Agency (NCIA),Hague, the Netherlands, Working paper NCIA/2020/NCB014792/03, Sep. 2020.
- [25] “First joint 5G military security workshop hosted by ACT and CCDCOE,” CCDCOE. https://ccdcoe.org/news/2021/first‐joint‐5g‐securityworkshop‐hosted‐by‐act‐and‐ccdcoe/ (accessed Mar. 20, 2023).
- [26] S. Palczewski, “Polish Army is working on 5G,” [in Polish: “Wojsko Polskie pracuje nad 5G”] CyberDefence24.pl, Jan. 11, 2023. https://cyberdefence24.pl/armia‐i‐sluzby/wojskopolskie-pracuje‐nad‐5g (accessed Mar. 20, 2023).
- [27] L. Bastos and G. Capela, “Potential of 5G technologies for land and maritime tactical networks,” in 2020 3rd Workshop on 5G Technologies for First Responder and Tactical Networks, Oct. 2020.
- [28] G. Capela, W. Low, and L. Bastos, “5G for deployable and maritime communications,” in 2021 International Conference on Military Communication and Information Systems (ICMCIS), the Hague, the Netherlands, May 2021, pp. 1–7. doi: 10.1109/ICMCIS52405.2021.9486397.
- [29] L. Bastos, G. Capela, A. Koprulu, and G. Elzinga, “Potential of 5G technologies for military application,” in 2021 21st International Conference on Military Communication and Information Systems (ICMCIS), The Hague, Netherlands, May 2021, pp. 1–8. doi: 10.1109/ICMCIS52405.2021.9486402.
- [30] P. Skokowski, P. Rajchowski, J. M. Kelner, K. Malon, K. Maślanka, S. Ambroziak, A. Czapiewska, and J. Magiera, “5G technology use cases in military applications,” in 2022 18th Conference on Automation and Exploitation of Control and Communication Systems (ASMOR), [in Polish: “Scenariusze użycia technologii 5G w zastosowaniach wojskowych”, 2022 XVIII Konferencji Automatyzacji i Eksploatacji Systemów Sterowania iŁączności (ASMOR)], Władysławowo, Poland, Oct. 2022.
- [31] P. J. Varga, T. Wührl, S. Gyányi, M. T. Baross, and A. Németh, “Jamming attacks in 5G NR FR1,” in 2022 IEEE 5th International Conference and Workshop Óbuda on Electrical and Power Engineering (CANDO‐EPE), Budapest, Hungary, Nov. 2022, pp. 175–180. doi: 10.1109/CANDO‐EPE57516.2022.10046381.
- [32] Y. Arjoune and S. Faruque, “Smart jamming attacks in 5G New Radio: A review,” in 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA: IEEE, Jan 2020, pp. 1010–1015. doi: 10.1109/CCWC47524.2020.9031175.
- [33] M. Lichtman, R. Rao, V. Marojevic, J. Reed, and R. P. Jover, “5G NR jamming, spoofing, and sniffing: Threat assessment and mitigation,” in 2018 IEEE International Conference on Communications Workshops (ICCWorkshops), Kansas City, MO, USA: IEEE, May 2018, pp. 1–6. doi: 10.1109/ICCW.2018.8403769.
- [34] Mr. A. Birutis and A. Mykkeltveit, “Practical jamming of a commercial 5G radio system at 3.6 GHz,” Procedia Computer Science, vol. 205, pp. 58–67, Jan. 2022, doi: 10.1016/j.procs.2022.09.007.
- [35] J. Śliwa and M. Suchański, “Security threats and countermeasures in military 5G systems,” in 2022 24th International Microwave and Radar Conference (MIKON), Gdansk, Poland, Sep. 2022, pp. 1–6. doi: 10.23919/MIKON54314.2022.9924818.
- [36] F. S. Alqurashi, A. Trichili, N. Saeed, B. S. Ooi, and M. S. Alouini, “Maritime communications: A survey on enabling technologies, opportunities, and challenges,” IEEE Internet of Things Journal, vol. 10, no. 4, pp. 3525– 3547, Feb. 2023, doi: 10.1109/JIOT.2022.3219674.
- [37] Y. Wang, W. Feng, J. Wang, and T. Q. S. Quek, “Hybrid satellite‐UAV‐terrestrial networks for 6G ubiquitous coverage: A maritime communications perspective,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 11, pp. 3475–3490, Nov. 2021, doi: 10.1109/JSAC.2021.3088692.
- [38] F. Guo, F. R. Yu, H. Zhang, X. Li, H. Ji, and V. C. M. Leung, “Enabling massive IoT toward 6G: A comprehensive survey,” IEEE Internet of Things Journal, vol. 8, no. 15, pp. 11891–11915, Aug. 2021, doi: 10.1109/JIOT.2021.3063686.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a27ad473-b218-4315-a91a-eeb437f642e2