PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gradient Al2O3-Ni composites for aggressive substance transport: a novel approach using centrifugal gel casting

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study focuses on the development and characterization of Al2O3-Ni composite materials designed for use in environments where high corrosion resistance and mechanical strength are critical. The composites were formed using the centrifugal gel casting method to produce pipes with a gradient structure. The inner layer of the pipes consisted mainly of Al2O3, while the outer layer incorporated nickel particles. Rheological, thermogravimetric, and microstructural analyses were conducted to optimize the composite's formulation and processing conditions. The results showed that a monomer content of 3% by weight of 2-hydroxyethyl acrylate (HEA) provided an optimal balance between workability and polymer network formation. Corrosion tests revealed that while the alumina-rich inner layer exhibited good chemical resistance, the presence of nickel particles on the surface led to localized corrosion, particularly in acidic environments. The findings indicate that further refinement of the casting process is necessary to improve the distribution of the nickel particles and enhance the material's overall corrosion resistance.
Rocznik
Strony
144--156
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Woloska St., 02-507 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemistry, 3 Noakowskiego St., 00-664 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemistry, 3 Noakowskiego St., 00-664 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Woloska St., 02-507 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Woloska St., 02-507 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemistry, 3 Noakowskiego St., 00-664 Warsaw, Poland
  • Military University of Technology, Faculty of Mechanical Engineering, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Woloska St., 02-507 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Woloska St., 02-507 Warsaw, Poland
Bibliografia
  • [1] Shanaghi A., Chu P.K., Souri A.R., Mehrjou B., Advanced Ceramics (Self-healing Ceramic Coatings). [In:] Ikhmayies, S.J. (eds) Advanced Ceramics. Advances in Material Research and Technology. Springer, Cham. 2024, https://doi.org/10.1007/978-3-031-43918-6-4.
  • [2] Xu H., Li S., Liu R. et al., Fabrication of alumina ceramics with high flexural strength using stereolithography. Int J Adv Manuf Technol 2023;128:2983–2994, https://doi.org/10.1007/s00170-023-12100-x.
  • [3] Abyzov A.M., Aluminum Oxide and Alumina Ceramics (review). Part 1. Properties of Al2O3 and Commercial Production of Dispersed Al2O3. Refract Ind Ceram 2019;60:24-32, https://doi.org/10.1007/s11148-019 00304-2.
  • [4] Doremus R.H., Alumina-silica system, Handbook of ceramics and composites. Vol. 1: Synthesis and properties; ed. by N. P. Cheremisinoff, Marcel Dekker, New York, Basel 1990:23-34.
  • [5] Galusek D., Ghillányová K., Ceramic oxides, Ceramics science and technology. Vol. 2: Materials and proper ties; ed. by R. Riedel and I.-W. Chen, Wiley-VCH, Darmstadt, Ch. 2010;1:3-58.
  • [6] Samanta R., Sengupta B., Mandal G., Wazeer A., Das A., Sinha A., Processing of Composites with Metal lic, Ceramic, and Polymeric Matrices. [In:] Boppana S.B., Ramachandra C.G., Kumar K.P., Ramesh S. (eds), Structural Composite Materials. Composites Science and Technology. Springer, Singapore. 2024, https://doi.org/10.1007/978-981-99-5982-2_5.
  • [7] Zygmuntowicz J., Wiecinska P., Miazga A., et al., Thermoanalytical studies of the ceramic-metal composites obtained by gel-centrifugal casting. J Therm Anal Calorim 2018;133:303-312. https://doi.org/10.1007/s10973 017-6647-z.
  • [8] Zygmuntowicz J., Maciągowska M., Piotrkiewicz P., et al. Study of the impact of metallic components Cu, Ni, Cr, and Mo on the microstructure of Al2O3-Cu-Me composites. Int J Adv Manuf Technol. 2024;133:5127–5146, https://doi.org/10.1007/s00170-024-14070-0.
  • [9] Zygmuntowicz J., Winkler H., Wachowski M., et al., Novel Functionally Gradient Composites Al2O3-Cu-Mo Obtained via Centrifugal Slip Casting. Metall Mater Trans A 2021;52:3628–3646, https://doi.org/10.1007/s11661-021-06334-1.
  • [10] Bednarek P., Szafran M., Sakka Y., Mizerski T., Gelcasting of alumina with a new monomer synthesized from glucose, J Eur Ceram Soc 2010;30(8):1795–1801, https://doi.org/10.1016/j.jeurceramsoc.2010.01.036.
  • [11] Szafran M., Szudarska A., Bednarek P., New low-toxic water-soluble monomers for gelcasting of ceramic powders. Adv. Sci. Technol. 2010;62:163–168.
  • [12] Pietrzak E., Wiecinska P., Szafran M., 2-carboxyethyl acrylate as a new monomer preventing negative effect of oxygen inhibition in gelcasting of alumina, Ceram Int 2016;42(12):13682-13688, https://doi.org/10.1016/j.ceramint.2016.05.166.
  • [13] Michalski J., Wejrzanowski T., Pielaszek R., Konopka K., Łojkowski W., Kurzydłowski K.J., Application of image analysis for characterization of powders. Mater Sci Pol 2005;23:79–86.
  • [14] Wejrzanowski T., Spychalski W., Rozniatowski K., Kurzydłowski K.J., Image Based Analysis of Complex Microstructures of Engineering Materials. Int J Appl Math Comp Sci 2008;18:33–39, 10.2478/v10006-008 0003-1.
  • [15] Wejrzanowski T., Kurzydlowski K.J., Stereology of grains in nano-crystals. Solid State Phenomena 2003;94:221–228, 10.4028/www.scientific.net/SSP.94.221.
  • [16] Kokabi M., Babaluo A.A., Barati A., Gelation process in low-toxic gelcasting systems. J Eur Ceram Soc 2006;26(15):3083–3090, https://doi.org/10.1016/j.jeur ceramsoc.2005.08.020.
  • [17] Zuhair A.M., Tatsuki O., Yuji H., Mityunjay S., Innovative Processing and Manufacturing of Advanced Ceramics and Composites. Wiley 2011, 10.1002/9780470 880456.
  • [18] Sharifi O., Alizadeh S.M., Golmohammad M., Golestanifard F., Studying the Role of Gelation Agents in Gelcasting Non-porous Si3N4 Bodies by Pressureless Sintering. Silicon 2022;14:10447–10457, https://doi.org/10.1007/s12633-022-01798-1.
  • [19] Schmidt S.J., Thomas L.C., Thermal Analysis. In: Is mail, B.P., Nielsen, S.S. (eds), Nielsen's Food Analysis. Food Science Text Series. Springer, Cham. 2024, https://doi.org/10.1007/978-3-031-50643-7_30.
  • [20] Ahluwalia V.K., Thermogravimetric Analysis. [In:] Instrumental Methods of Chemical Analysis. Springer, Cham. 2023, https://doi.org/10.1007/978-3-031-38355 7_11.
  • [21] Ahluwalia V.K., Differential Thermal Analysis. [In:] In strumental Methods of Chemical Analysis. Springer, Cham. 2023, https://doi.org/10.1007/978-3-031-38355 7_12.
  • [22] Travaglini J., Barsoum M.W., Jovic V., El-Raghy T., The corrosion behavior of Ti3SiC2 in common acids and dilute NaOH. Corrosion Science 2003;45:1313-1327, https://doi.org/10.1016/S0010-938X(02)00227-5.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a270e428-9d47-4872-ba01-2766510cee41
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.