PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A systematic review of artificial neural network techniques for analysis of foot plantar pressure

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plantar pressure distribution offers insights into foot function, gait mechanics, and foot-related issues. This systematic review presents an analysis of the use of artificial neural network techniques in the context of plantar pressure analysis. 60 studies were included in the review. Sample size, pathology, pressure sensor number, data collection device, utilization of other sensor devices, ground-truth methods, pre-processing dataset, neural network type, and evaluation metrics were evaluated. Utilization of customized wearable footwear devices for the acquisition of data was common amongst both healthy participants and patients. Inertial measurement units emerged as an effective compensatory measure to address the limitations associated with the distribution of plantar pressure. Ground truth methods predominantly relied on the usage of both annotations and reference devices. Multilayer perceptron, convolutional neural networks, and recurrent neural networks were identified as the most frequently employed artificial neural network algorithms across the reviewed studies. Finally, the evaluation of performance largely drew upon statistical descriptions and other machine learning methods. This review provides a comprehensive understanding of the use of artificial neural network techniques in plantar pressure analysis, highlighting opportunities for future research.
Twórcy
  • School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
autor
  • School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
  • Healthia Limited, Bowen Hills, QLD 4006, Australia
  • Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
autor
  • School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
  • Healthia Limited, Bowen Hills, QLD 4006, Australia
  • iOrthotics Pty Ltd, Windsor, QLD 4030, Australia
  • School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
  • iOrthotics Pty Ltd, Windsor, QLD 4030, Australia
autor
  • School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
autor
  • School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
Bibliografia
  • [1] Razak AHA, Zayegh A, Begg RK, et al. Foot plantar pressure measurement system: a review. Sensors 2012;12(7):9884-912. https://doi.org/10.3390/s120709884.
  • [2] Chen J, Dai Y, Grimaldi NS, et al. Plantar pressure-based insole gait monitoring techniques for diseases monitoring and analysis: a review. Adv Mater Technol 2022;7(1):202100566. https://doi.org/10.1002/admt.202100566.
  • [3] Ramirez-Bautista JA, Hernández-Zavala A, Chaparro-Cárdenas SL, et al. Review on plantar data analysis for disease diagnosis. Biocybernet Biomed Eng 2018;38 (2):342-61. https://doi.org/10.1016/j.bbe.2018.02.004.
  • [4] Xu G, Huang H, Liu C, et al. A model for medical diagnosis based on plantar pressure. In: 2017 9th International conference on advances in pattern recognition, ICAPR 2017; 2017. p. 1-6. https://doi.org/10.1109/ICAPR.2017.8593180.
  • [5] Hemler SL, Ntella SL, Jeanmonod K, et al. Intelligent plantar pressure offloading for the prevention of diabetic foot ulcers and amputations. Front Endocrinol 2023;14. https://doi.org/10.3389/fendo.2023.1166513.
  • [6] Ramirez-Bautista JA, Huerta-Ruelas JA, Kóczy LT, et al. Classification of plantar foot alterations by fuzzy cognitive maps against multi-layer perceptron neural network. Biocybernet Biomed Eng 2020;40(1):404-14. https://doi.org/10.1016/ j.bbe.2019.12.008.
  • [7] Boob MA, Phansopkar P, Somaiya KJ, et al. Physiotherapeutic interventions for individuals suffering from plantar fasciitis: a systematic review. Curēus 2023;15 (7):e42740. https://doi.org/10.7759/cureus.42740.
  • [8] Zhang C, Xu Y, Li J, et al. Mixed comparison of intervention with assistive devices for plantar pressure distribution and anatomical characteristics in adults with pes cavus: systemic review with network meta-analysis. Appl Sci 2023;13(17):9699. https://doi.org/10.3390/app13179699.
  • [9] Lee SH, Lin BS, Lee HC, et al. Artificial intelligence-based assessment system for evaluating suitable range of heel height. IEEE Access 2021;9:38374-85. https:// doi.org/10.1109/ACCESS.2021.3063912.
  • [10] Honert EC, Hoitz F, Blades S, et al. Estimating running ground reaction forces from plantar pressure during graded running. Sensors 2022;22(9):3338. https:// doi.org/10.3390/s22093338.
  • [11] Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol 2020;9(2). https://doi.org/10.1167/tvst.9.2.14.
  • [12] Cronin NJ. Using deep neural networks for kinematic analysis: challenges and opportunities. J Biomech 2021;123. https://doi.org/10.1016/j.jbiomech.2021.110460.
  • [13] Hadders-Algra M. Early diagnostics and early intervention in neurodevelopmental disorders-age-dependent challenges and opportunities. J Clin Med 2021;10(4):1-24. https://doi.org/10.3390/jcm10040861.
  • [14] Mei J, Desrosiers C, Frasnelli J. Machine learning for the diagnosis of Parkinson’s disease: a review of literature. Front Aging Neurosci 2021;13. https://doi.org/ 10.3389/fnagi.2021.633752.
  • [15] Tulloch J, Zamani R, Akrami M. Machine learning in the prevention, diagnosis and management of diabetic foot ulcers: a systematic review. IEEE Access 2020;8: 198977-9000. https://doi.org/10.1109/ACCESS.2020.3035327.
  • [16] Wang C, Li D, Li Z, et al. An efficient local binary pattern based plantar pressure optical sensor image classification using convolutional neural networks. Optik 2019;185:543-57. https://doi.org/10.1016/j.ijleo.2019.02.109.
  • [17] Subramaniam S, Majumder S, Faisal AI, et al. Insole-based systems for health monitoring: current solutions and research challenges. Sensors 2022;22(2):438. https://doi.org/10.3390/s22020438.
  • [18] Del Din S, Hickey A, Hurwitz N, et al. Measuring gait with an accelerometer-based wearable: Influence of device location, testing protocol and age. Physiol Meas 2016;37(10):1785-97. https://doi.org/10.1088/0967-3334/37/10/1785.
  • [19] Tan AM, Fuss FK, Weizman Y, et al. Design of low cost smart insole for real time measurement of plantar pressure. Proc Technol 2015;20:117-22. https://doi.org/ 10.1016/j.protcy.2015.07.020.
  • [20] Xia Y, Li Y, Xun L, et al. A convolutional neural network cascade for plantar pressure images registration. Gait Posture 2019;68:403-8. https://doi.org/10.1016/j.gaitpost.2018.12.021.
  • [21] Aşuroğlu T, Açıcı K, Erdaş ÇB, et al. Parkinson’s disease monitoring from gait analysis via foot-worn sensors. Biocybernet Biomed Eng 2018;38(3):760-72. https://doi.org/10.1016/j.bbe.2018.06.002.
  • [22] Howcroft J, Lemaire ED, Kofman J. Prospective elderly fall prediction by older-adult fall-risk modeling with feature selection. Biomed Signal Process Control 2018;43:320-8. https://doi.org/10.1016/j.bspc.2018.03.005.
  • [23] Lin C, Ruan S, Hsu W, et al. Optimizing the sensor placement for foot plantar centre of pressure without prior knowledge using deep reinforcement learning. Sensors 2020;20(19):1-16. https://doi.org/10.3390/s20195588.
  • [24] Potluri S, Chandran AB, Diedrich C, et al. Machine learning based human gait segmentation with wearable sensor platform. In: 2019 41st Annual international conference of the IEEE engineering in medicine and biology society; 2019. p. 588-94. doi: 10.1109/EMBC.2019.8857509.
  • [25] Madrigal JAB, Negrete JC, Guerrero RM, et al. 3D motion tracking of the shoulder joint with respect to the thorax using MARG sensors and data fusion algorithm. Biocybernet Biomed Eng 2020;40(3):1205-24. https://doi.org/10.1016/j. Bbe.2020.04.008.
  • [26] Zheng J, Cao H, Chen D, et al. Designing deep reinforcement learning systems for musculoskeletal modelling and locomotion analysis using wearable sensor feedback. IEEE Sens J 2020;20(16):9274-82. https://doi.org/10.1109/ JSEN.2020.2986768.
  • [27] Mei Z, Ivanov K, Lubich L, et al. Recognition of pes cavus foot using smart insole: a pilot study. Intell Robot Appl 2019;11742:654-62. https://doi.org/10.1007/978-3-030-27535-8_58.
  • [28] Allam JP, Samantray S, Sahoo SP, et al. A deformable CNN architecture for predicting clinical acceptability of ECG signal. Biocybernet Biomed Eng 2023;43 (1):335-51. https://doi.org/10.1016/j.bbe.2023.01.006.
  • [29] Jun K, Lee S, Lee DW, et al. Deep learning-based multimodal abnormal gait classification using a 3D skeleton and plantar foot pressure. IEEE Access 2021;9: 161576-89. https://doi.org/10.1109/ACCESS.2021.3131613.
  • [30] Ramachandram D, Taylor GW. Deep multimodal learning: a survey on recent advances and trends. IEEE 2017;34(6):96-108. https://doi.org/10.1109/MSP.2017.2738401.
  • [31] Jourdan T, Debs N, Frindel C. The contribution of machine learning in the validation of commercial wearable sensors for gait monitoring in patients: a systematic review. Sensors 2021;21(14):4808. https://doi.org/10.3390/s21144808.
  • [32] Howcroft J, Kofman J, Lemaire ED. Feature selection for elderly faller classification based on wearable sensors. J Neuroeng Rehabil 2017;14(1). https://doi.org/10.1186/s12984-017-0255-9.
  • [33] Banerjee S, Lyu J, Huang Z, et al. Ultrasound spine image segmentation using multi-scale feature fusion Skip-Inception U-Net (SIU-Net). Biocybernet Biomed Eng 2022;42(1):341-61. https://doi.org/10.1016/j.bbe.2022.02.011.
  • [34] Chan HL, Ouyang Y, Chen RS, et al. Deep neural network for the detections of fall and physical activities using foot pressures and inertial sensing. Sensors 2023;23 (1):495. https://doi.org/10.3390/s23010495.
  • [35] Avci D, Sert E, Dogantekin E, et al. A new super resolution Faster R-CNN model based detection and classification of urine sediments. Biocybernet Biomed Eng 2023;43(1):58-68. https://doi.org/10.1016/j.bbe.2022.12.001.
  • [36] Jurek J, Materka A, Ludwisiak K, et al. Supervised denoising of diffusion-weighted magnetic resonance images using a convolutional neural network and transfer learning. Biocybernet Biomed Eng 2023;43(1):206-32. https://doi.org/ 10.1016/j.bbe.2022.12.006.
  • [37] Liu Y, Liu Z, Luo X, et al. Diagnosis of Parkinson’s disease based on SHAP value feature selection. Biocybernet Biomed Eng 2022;42(3):856-69. https://doi.org/10.1016/j.bbe.2022.06.007.
  • [38] Salankar N, Qaisar SM, Pławiak P, et al. EEG based alcoholism detection by oscillatory modes decomposition second order difference plots and machine learning. Biocybernet Biomed Eng 2022;42(1):173-86. https://doi.org/10.1016/ j.bbe.2021.12.009.
  • [39] Wang Y, Song Q, Ma T, et al. Transformation classification of human squat/sit-tostand based on multichannel information fusion. Int J Adv Robot Syst 2022;19(4): 172988062211037. https://doi.org/10.1177/17298806221103708.
  • [40] Mun F, Choi A. Deep learning approach to estimate foot pressure distribution in walking with application for a cost-effective insole system. J Neuroeng Rehabil 2022;19(1). https://doi.org/10.1186/s12984-022-00987-8.
  • [41] Derlatka M, Bogdan M. Recognition of a person wearing sport shoes or high heels through gait using two types of sensors. Sensors 2018;18(5):1639. https://doi.org/10.3390/s18051639.
  • [42] Snyder SJ, Chu E, Um J, et al. Prediction of knee adduction moment using innovative instrumented insole and deep learning neural networks in healthy female individuals. Knee 2023;41:115-23. https://doi.org/10.1016/j.knee.2022.12.007.
  • [43] Hammad M, Bakrey M, Bakhiet A, et al. A novel end-to-end deep learning approach for cancer detection based on microscopic medical images. Biocybernet Biomed Eng 2022;42(3):737-48. https://doi.org/10.1016/j.bbe.2022.05.009.
  • [44] Munagala NK, Langoju LRR, Rani AD, et al. A smart IoT-enabled heart disease monitoring system using meta-heuristic-based Fuzzy-LSTM model. Biocybernet Biomed Eng 2022;42(4):1183-204. https://doi.org/10.1016/j.bbe.2022.10.001.
  • [45] Antwi-Afari MF, Qarout Y, Herzallah R, et al. Deep learning-based networks for automated recognition and classification of awkward working postures in construction using wearable insole sensor data. Autom Constr 2022;136:104181. https://doi.org/10.1016/j.autcon.2022.104181.
  • [46] Ahmadian M, Beheshti MT, Kalhor A, et al. Unsupervised generative adversarial network for plantar pressure image-to-image translation. In: 2021 43rd Annual international conference of the IEEE engineering in medicine & biology society; 2021. p. 2580-3. doi: 10.1109/EMBC46164.2021.9629684.
  • [47] Kawada M, Nakajima K, Sashima A, et al. Estimation of fall history by plantar pressure during walking based on auto encoder and principal component analysis. In: 2021 SICE international symposium on control systems; 2021. p. 20-7. https://doi.org/10.23919/SICEISCS51787.2021.9495319.
  • [48] Acheampong FA, Nunoo-Mensah H, Chen W. Transformer models for text-based emotion detection: a review of BERT-based approaches. Artif Intell Rev 2021;54 (8):5789-829. https://doi.org/10.1007/s10462-021-09958-2.
  • [49] Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Online) 2021;372: n71-. https://doi.org/10.1136/bmj.n71.
  • [50] Ouzzani M, Hammady H, Fedorowicz Z, et al. Rayyan-a web and mobile app for systematic reviews. Syst Rev 2016;5(1). https://doi.org/10.1186/s13643-016-0384-4.
  • [51] Long HA, French DP, Brooks JM. Optimising the value of the critical appraisal skills programme (CASP) tool for quality appraisal in qualitative evidence synthesis. Res Methods Med Health Sci 2020;1(1):31-42. https://doi.org/ 10.1177/2632084320947559.
  • [52] Wen J, Li S, Lin Z, et al. Systematic literature review of machine learning based software development effort estimation models. Inf Softw Technol 2012;54(1): 41-59. https://doi.org/10.1016/j.infsof.2011.09.002.
  • [53] Kumar D, Kukreja V. Deep learning in wheat diseases classification: a systematic review. Multimed Tools Appl 2022;81(7):10143-87. https://doi.org/10.1007/ s11042-022-12160-3.
  • [54] Da’u A, Salim N. Recommendation system based on deep learning methods: a systematic review and new directions. Artif Intell Rev 2020;53(4):2709-48. https://doi.org/10.1007/s10462-019-09744-1.
  • [55] Mohammad-Rahimi H, Motamedian SR, Rohban MH, et al. Deep learning for caries detection: a systematic review. J Dent 2022;122. https://doi.org/10.1016/j.jdent.2022.104115.
  • [56] Kwong MT, Colopy GW, Weber AM, et al. The efficacy and effectiveness of machine learning for weaning in mechanically ventilated patients at the intensive care unit: a systematic review. Bio-Des Manuf 2019;2(1):31-40. https://doi.org/ 10.1007/s42242-018-0030-1.
  • [57] Kitchenham B, Brereton OP, Budgen D, et al. Systematic literature reviews in software engineering - a systematic literature review. Inf Softw Technol 2009;51 (1):7-15. https://doi.org/10.1016/j.infsof.2008.09.009.
  • [58] Ning Z, Li L, Jin X. Classification of neurodegenerative diseases based on CNN and LSTM. In: 2018 9th International conference on information technology in medicine and education; 2018. p. 82-5. doi: 10.1109/ITME.2018.00029.
  • [59] Zhao A, Qi L, Li J, et al. A hybrid spatio-temporal model for detection and severity rating of Parkinson’s disease from gait data. Neurocomputing 2018;315:1-8. https://doi.org/10.1016/j.neucom.2018.03.032.
  • [60] Joo SB, Oh SE, Mun JH. Improving the ground reaction force prediction accuracy using one-axis plantar pressure: expansion of input variable for neural network. J Biomech 2016;49(14):3153-61. https://doi.org/10.1016/j.jbiomech.2016.07.029.
  • [61] Howcroft J, Kofman J, Lemaire ED. Prospective fall-risk prediction models for older adults based on wearable sensors. IEEE Trans Neural Syst Rehabil Eng 2017; 25(10):1812-20. https://doi.org/10.1109/TNSRE.2017.2687100.
  • [62] Lee S-S, Choi ST, Choi S-I. Classification of gait type based on deep learning using various sensors with smart insole. Sensors 2019;19(8):1757. https://doi.org/10.3390/s19081757.
  • [63] Wang F, Yan L, Xiao J. Recognition of the gait phase based on new deep learning algorithm using multisensor information fusion. Sensors Mater 2019;31(10): 3041-54. https://doi.org/10.18494/SAM.2019.2493.
  • [64] Antwi-Afari MF, Li H, Umer W, et al. Construction activity recognition and ergonomic risk assessment using a wearable insole pressure system. J Constr Eng Manag 2020;146(7). https://doi.org/10.1061/(ASCE)CO.1943-7862.0001849.
  • [65] Mei Z, Ivanov K, Zhao G, et al. Foot type classification using sensor-enabled footwear and 1D-CNN. Measur: J Int Measur Confed 2020;165:108184. https:// doi.org/10.1016/j.measurement.2020.108184.
  • [66] Luo R, Sun S, Zhang X, et al. A low-cost end-to-end sEMG-based gait sub-phase recognition system. IEEE Trans Neural Syst Rehabil Eng 2020;28(1):267-76. https://doi.org/10.1109/TNSRE.2019.2950096.
  • [67] Yunas SU, Ozanyan KB. Gait activity classification using multi-modality sensor fusion: a deep learning approach. IEEE Sens J 2021;21(15):16870-9. https://doi. org/10.1109/JSEN.2021.3077698.
  • [68] Li B, Li Y, Sun Y, et al. A monitoring method of freezing of gait based on multimodal fusion. Biomed Signal Process Control 2023;82:104589. https://doi.org/10.1016/j.bspc.2023.104589.
  • [69] Xian X, Zhou Z, Huang G, et al. Optimal sensor placement for estimation of center of plantar pressure based on the improved genetic algorithms. IEEE Sens J 2021; 21(24):28077-86. https://doi.org/10.1109/JSEN.2021.3125021.
  • [70] Sim T, Kwon H, Oh SE, et al. Predicting complete ground reaction forces and moments during gait with insole plantar pressure information using a wavelet neural network. J Biomech Eng 2015;137(9). https://doi.org/10.1115/1.4030892.
  • [71] Antwi-Afari MF, Li H, Yu Y, Kong L. Wearable insole pressure system for automated detection and classification of awkward working postures in construction workers. Autom Constr 2018;96:433-41. https://doi.org/10.1016/j.autcon.2018.10.004.
  • [72] Sivakumar S, Gopalai AA, Lim KH, Gouwanda D. Artificial neural network based ankle joint angle estimation using instrumented foot insoles. Biomed Signal Process Control 2019;54:101614. https://doi.org/10.1016/j.bspc.2019.101614.
  • [73] Liang S, Liu Y, Li G, Zhao G. Elderly fall risk prediction with plantar centre of force using ConvLSTM algorithm. In: 2019 IEEE international conference on cyborg and bionic systems; 2019. p. 36-41. https://doi.org/10.1109/CBS46900.2019.9114487.
  • [74] Domínguez-Morales MJ, Luna-Perejón F, Miró-Amarante L, et al. Smart footwear insole for recognition of foot pronation and supination using neural networks. Appl Sci 2019;9(19):3970. https://doi.org/10.3390/app9193970.
  • [75] Chae J, Kang Y-J, Noh Y. A deep-learning approach for foot-type classification using heterogeneous pressure data. Sensors 2020;20(16):1-19. https://doi.org/10.3390/s20164481.
  • [76] Aversano L, Bernardi ML, Cimitile M, Pecori R. Fuzzy neural networks to detect Parkinson disease. In: IEEE international conference on fuzzy systems; 2020. https://doi.org/10.1109/FUZZ48607.2020.9177948.
  • [77] Alhaidar AR, Sikkandar MY, Alkathiry AA. Reconstruction of dual tasking gait pattern in Parkinson’s disease subjects using radial basis function based artificial intelligence. J Intell Fuzzy Syst 2020;39(4):5437-48. https://doi.org/10.3233/JIFS-189027.
  • [78] Beyrami SMG, Ghaderyan P. A robust, cost-effective and non-invasive computer-aided method for diagnosis three types of neurodegenerative diseases with gait signal analysis. Measur: J Int Measur Confed 2020;156:107579. https://doi.org/ 10.1016/j.measurement.2020.107579.
  • [79] Wang D, Li Z, Dey N, et al. Deep-segmentation of plantar pressure images incorporating fully convolutional neural networks. Biocybernet Biomed Eng 2020;40(1):546-58. https://doi.org/10.1016/j.bbe.2020.01.004.
  • [80] Luna-Perejón F, Domínguez-Morales M, Gutiérrez-Galán D, Civit-Balcells A. Low-power embedded system for gait classification using neural networks. J Low Power Electron Appl 2020;10(2):14. https://doi.org/10.3390/jlpea10020014.
  • [81] Shalin G, Pardoel S, Nantel J, Lemaire ED, Kofman J. Prediction of freezing of gait in Parkinson’s disease from foot plantar-pressure arrays using a convolutional neural network. In: 2020 42nd annual international conference of the IEEE engineering in medicine & biology society; 2020. p. 244-7. https://doi.org/10.1109/EMBC44109.2020.9176382.
  • [82] Chhoeum V, Kim Y, Min S-D. Estimation of knee joint angle using textile capacitive sensor and artificial neural network implementing with three shoe types at two gait speeds: a preliminary investigation. Sensors 2021;21(16):5484. https://doi.org/10.3390/s21165484.
  • [83] Chhoeum V, Kim Y, Min SD. A convolution neural network approach to access knee joint angle using foot pressure mapping images: a preliminary investigation. IEEE Sens J 2021;21(15):16937-44. https://doi.org/10.1109/ JSEN.2021.3079516.
  • [84] Alharthi AS, Casson AJ, Ozanyan KB. Gait spatiotemporal signal analysis for Parkinson’s disease detection and severity rating. IEEE Sens J 2021;21(2): 1838-48. https://doi.org/10.1109/JSEN.2020.3018262.
  • [85] Han J, Wang D, Li Z, et al. Plantar pressure image classification employing residual-network model-based conditional generative adversarial networks: a comparison of normal, planus, and talipes equinovarus feet. Soft Comput 2023;27 (3):1763-82. https://doi.org/10.1007/s00500-021-06073-w.
  • [86] Chen H, Sunardi LBY, et al. Estimation of various walking intensities based on wearable plantar pressure sensors using artificial neural networks. Sensors 2021; 21(19):6513. https://doi.org/10.3390/s21196513.
  • [87] Chen H, Sunardi JY, et al. Using deep learning methods to predict walking intensity from plantar pressure images. Adv Phys Soc Occup Ergon 2021;273: 270-7. https://doi.org/10.1007/978-3-030-80713-9_35.
  • [88] Shalin G, Pardoel S, Lemaire ED, Nantel J, Kofman J. Prediction and detection of freezing of gait in Parkinson’s disease from plantar pressure data using long shortterm memory neural-networks. J Neuroeng Rehabil 2021;18(1):167. https://doi. org/10.1186/s12984-021-00958-5.
  • [89] Kaya M, Karakus¸ S, Tuncer SA. Detection of ataxia with hybrid convolutional neural network using static plantar pressure distribution model in patients with multiple sclerosis. Comput Methods Progr Biomed 2022;214:106525. https://doi. org/10.1016/j.cmpb.2021.106525.
  • [90] Wang C, Li D. Diabetes noninvasive recognition via improved capsule network. IEICE Trans Inf Syst 2022;E105.D(8):1464-71. https://doi.org/10.1587/ transinf.2022EDP7037.
  • [91] Ardhianto P, Subiakto RBR, Lin CY, et al. A deep learning method for foot progression angle detection in plantar pressure images. Sensors 2022;22(7):2786. https://doi.org/10.3390/s22072786.
  • [92] Ardhianto P, Liau BY, Jan YK, et al. Deep learning in left and right footprint image detection based on plantar pressure. Appl Sci 2022;12(17):8885. https://doi.org/10.3390/app12178885.
  • [93] Wu S, Ou J, Shu L, et al. MhNet: multi-scale spatio-temporal hierarchical network for real-time wearable fall risk assessment of the elderly. Comput Biol Med 2022; 144:105355. https://doi.org/10.1016/j.compbiomed.2022.105355.
  • [94] Moon J, Lee D, Jung H, Choi A, Mun JH. Machine learning strategies for low-cost insole-based prediction of centre of gravity during gait in healthy males. Sensors 2022;22(9):3499. https://doi.org/10.3390/s22093499.
  • [95] Ogul BB, Ozdemir S. A pairwise deep ranking model for relative assessment of Parkinson’s disease patients from gait signals. IEEE Access 2022;10:6676-83. https://doi.org/10.1109/ACCESS.2021.3136724.
  • [96] Wang L, Sun Y, Li Q, et al. IMU-based gait normalcy index calculation for clinical evaluation of impaired gait. IEEE J Biomed Health Inform 2021;25(1):3-12. https://doi.org/10.1109/JBHI.2020.2982978.
  • [97] Saljuqi M, Ghaderyan P. Combining homomorphic filtering and recurrent neural network in gait signal analysis for neurodegenerative diseases detection. Biocybernet Biomed Eng 2023;43(2):476-93. https://doi.org/10.1016/j.bbe.2023.04.001.
  • [98] Hajizadeh M, Desmyttere G, Ménard AL, et al. Understanding the role of foot biomechanics on regional foot orthosis deformation in flatfoot individuals during walking. Gait Posture 2022;91:117-25. https://doi.org/10.1016/j. Gaitpost.2021.10.015.
  • [99] Al KA, Al KM, Khan RM, et al. Offloading plantar pressures in healthy adults: stirrup cast vs total contact cast. Foot Ankle Int 2022;43(5):620-7. https://doi.org/10.1177/10711007211064623.
  • [100] Ahmed S, Kabir MA, Chowdhury ME, Nancarrow S. AI-driven personalised offloading device prescriptions: a cutting-edge approach to preventing diabetes-related plantar forefoot ulcers and complications; 2023. doi: 10.48550/arxiv.2309.13049.
  • [101] Bus SA, Armstrong DG, Gooday C, et al. Guidelines on offloading foot ulcers in persons with diabetes (IWGDF 2019 update). Diabetes/Metabolism Res Rev 2020; 36(1):e3274. doi: 10.1002/dmrr.3274.
  • [102] Bus SA, Lavery LA, Monteiro-Soares M, et al. Guidelines on the prevention of foot ulcers in persons with diabetes (IWGDF 2019 update). Diabetes Metab Res Rev 2020;36:e3269. https://doi.org/10.1002/dmrr.3269.
  • [103] Sutkowska E, Sutkowski K, Sokołowski M, et al. Distribution of the highest plantar pressure regions in patients with diabetes and its association with peripheral neuropathy, gender, age, and BMI: one centre study. J Diabetes Res 2019;2019: 7395769. https://doi.org/10.1155/2019/7395769.
  • [104] Farhan M, Wang J, Bray P, et al. Comparison of 3D scanning versus traditional methods of capturing foot and ankle morphology for the fabrication of orthoses: a systematic review. J Foot Ankle Res 2021;14(1):2. https://doi.org/10.1186/s13047-020-00442-8.
  • [105] Matsumura S, Ohta K, Yamamoto S-I, et al. Comfortable and convenient turning skill assessment for alpine skiers using imu and plantar pressure distribution sensors. Sensors 2021;21(3):1-12. https://doi.org/10.3390/s21030834.
  • [106] Wang C-C, Yang C-H, Wang C-S, et al. Artificial neural networks in the selection of shoe lasts for people with mild diabetes. Med Eng Phys 2019;64:37-45. https:// doi.org/10.1016/j.medengphy.2018.12.014.
  • [107] Choo YJ, Chang MC. Use of machine learning in the field of prosthetics and orthotics: a systematic narrative review. Prosthet Orthot Int 2023;47(3):226-40. https://doi.org/10.1097/PXR.0000000000000199.
  • [108] Anaya-Isaza A, Zequera-Diaz M. Fourier transform-based data augmentation in deep learning for diabetic foot thermograph classification. Biocybernet Biomed Eng 2022;42(2):437-52. https://doi.org/10.1016/j.bbe.2022.03.001.
  • [109] Ismail S, Ismail B. PCG signal classification using a hybrid multi round transfer learning classifier. Biocybernet Biomed Eng 2023;43(1):313-34. https://doi.org/10.1016/j.bbe.2023.01.004.
  • [110] Kora P, Ooi CP, Faust O, et al. Transfer learning techniques for medical image analysis: a review. Biocybernet Biomed Eng 2022;42(1):79-107. https://doi.org/10.1016/j.bbe.2021.11.004.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a26e7e74-8428-4b21-884c-cba5dcfe3da2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.