PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CO2 zamiast CO : katalityczna konwersja CO2 w syntezie związków karbonylowych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
CO2 instead of CO : catalytic conversion of CO2 in the synthesis of carbonyl compounds
Języki publikacji
PL
Abstrakty
EN
Modem industrial carbonylation processes, leading to functionalized carbonyl compounds, are based on the application of highly toxic and flammable carbon monoxide. Recently, carbon dioxide which is non-toxic and abundant, has attracted attention as a perfect C1 source to build new C-C and C-N bonds. From the standpoint of green and sustainable chemistry, it is appealing and challenging to combine the reduction of CO2 with subsequent carbonylation using in situ formed CO. Herein we present the application of CO2 as C1 building block for the carbonylation of different organic compounds in the presence of transition metal catalysts (e.g. Pd, Rh, Ru, Fe). Industrially important organic compounds has been obtained in hydroformylation, dehydrogenation, hydrogenation, aminocarbonylation and carboxylation reactions with CO2. On the other hand, rapid reduction of CO2 to CO could processed in the metal catalyst - free systems, using a catalytic amount of fluoride salt and stoichiometric amount of di- or hydrosilane. In these reactions silyl formate has been identified as an important intermediate formed from silane and carbon dioxide. Also hydrazine and sodium borohydrate have been used for CO2 reduction to formic acid or other products. Obviously, these reactions could be restricted because of their sensitivity to the applied conditions, high cost of reactants as well as the waste generated. The presented examples of catalytic carbonylation reactions with CO2 as a source of CO group illustrate a high technological potential of this strategy.
Rocznik
Strony
395--422
Opis fizyczny
Bibliogr. 65 poz., rys., schem.
Twórcy
  • Uniwersytet Wrocławski, Wydział Chemii, ul. F. Joliot-Curie 14, 50-383 Wrocław
  • Uniwersytet Wrocławski, Wydział Chemii, ul. F. Joliot-Curie 14, 50-383 Wrocław
Bibliografia
  • [1] Q. Liu, L. Wu, R. Jackstell, M. Beller, Nat. Commun., 2015, 6, 5933.
  • [2] L. Song, Y.-X. Jiang, Z. Zhang, Y.-Y. Gui, X.-Y. Zhou, D.-G. Yu, Chem. Commun., 2020, 56,8355.
  • [3] Ed. L. Kollar, Modern Carbonylation Methods, WileyVCH, Weinheim, 2008.
  • [4] A. Brennführer, H. Neumann, M. Beller, Angew. Chem., Int. Ed., 2009, 48, 4114.
  • [5] L. Wu, X. Fang, Q. Liu, R. Jackstell, M. Beller, X.-F. Wu, ACS Catal., 2014, 4, 2977.
  • [6] P. Gautam, B.M. Bhanage, Catal. Sci. Technol., 2015, 5, 4663.
  • [7] B. Wang, S. Sun, J.-T. Yu, Y. Jiang, J. Cheng, Org. Lett., 2017, 19, 4319.
  • [8] L. Song, G.-M. Cao, W.J. Zhou, J.-H. Ye, Z. Zhang, X.-Y. Tian, J. Li, D.-G. Yu, Org. Chem. Front., 2018, 5, 2086.
  • [9] B. Yu, Y. Zhao, H. Zhang, J. Xu, L. Hao, X. Gao, Z. Liu, Chem. Commun., 2014, 50, 2330.
  • [10] H. Takeda, C. Cometto, O. Ishitani, M. Robert, ACS Catal., 2017, 7, 70.
  • [11] X.X. Chang, T. Wang, J.L. Gong, Energy Environ. Sci., 2016, 9, 2177.
  • [12] Y. Yamazaki, H. Takeda, O. Ishitani, J. Photochem. Photobiol. C, 2015, 25, 106.
  • [13] M.T. Jensen, M.H. Rfflme, A.K. Ravn, R.W. Juhl, D.U. Nielsen, X.M. Hu, S.U. Pedersen, K. Daasbjerg, T. Skrydstrup, Nat. Commun., 2017, 8, 489.
  • [14] B.D. Steffey, C.J. Curtis, D.L. DuBois, Organomet., 1995, 14, 4937.
  • [15] D. Chen, Q. Yao, P. Cui, H. Liu, J. Xie, J. Yang, ASC Appl. Energy Mater., 2018, 1, 883.
  • [16] F. Lv, N. Han, Y. Qiu, X. Liu, J. Lou, Y. Li, Coord. Chem. Rev., 2020, 422, 213435.
  • [17] K. Motokura, R.A. Pramudita, Y. Manaka, J. Jpn. Petrol. Inst., 2019, 62, 255.
  • [18] S.D. Friis, R.H. Taaning, A.T. Lindhardt, T. Skrydstrup, J. Am. Chem. Soc., 2011, 11, 18114.
  • [19] C. Lescot, D.U. Nielsen, I.S. Makarov, A.T. Lindhardt, K. Daasbjerd, T. Skrydstrup, J. Am. Chem. Soc., 2014, 136, 6142.
  • [20] Y.-Z. Liu, X.-N. Li, S.-g. He, J. Phys. Chem. A, 2020, 124, 8414.
  • [21] W. Yan, Q.Y. Kouk, J. Luo, Y. Liu, A. Borgna, Catal. Commun., 2014, 46, 208.
  • [22] W. Yan, J. Luo, Q.-Y. Kouk, J. Zheng, Z. Zhong, Y. Liu, A. Borgna, App. Catal. A General, 2015, 508, 61.
  • [23] B. Yan, L. Wang, B. Wang, F. Alam, Z. Xiao, J. Li, T. Jiang, App. Catal. A General, 2019, 572, 71.
  • [24] W. Yan, S. Xi, Y. Du, M.K. Schreyer, Sz. X. Tan, Y. Liu, A. Borgna, ChemCatChem, 2018, 10, 3078.
  • [25] B. Yan, L. Wang, B. Wang, Q. Chen, Ch. Liu, J. Li, T. Jiang, React. Chem. Eng., 2020, 5, 2101.
  • [26] S.S.P. Malaza, B.Ch.E. Makhubela, J. CO2. Util., 2020, 39, 101149.
  • [27] C. Ziebart, Ch. Federsel, P. Anbarasan, R. Jackstell, W. Baumann, A. Spannenberg, M. Beller, J. Am. Chem. Soc., 2012, 134, 20701.
  • [28] B. Lee, H.M. Stowe, K.H. Lee, N.H. Hur, S.-J. Hwang, E. Paek, G.S. Hwang, Phys. Chem. Chem. Phys., 2017, 19, 24067.
  • [29] Q. Kang, T. Wang, P. Li, L. Liu, K. Chang, M. Li, J. Ye, Angew. Chem. Int. Ed., 2015, 54, 841.
  • [30] T.K. Todorova, T.N. Huan, X. Wang, H. Agarwala, M. Fontecave, Inorg. Chem., 2019, 58, 6893.
  • [31] P. Yang, R. Wang, H. Tao, Y. Zhang, M.-M. Titirici, App. Catal. B: Environmental, 2021, 280, 119454.
  • [32] Y. Zhao, Z. Zhang, X. Qian, Y. Han, Fuel, 2015, 142, 1.
  • [33] Y. Zhao, X. Qian, X. Zhao, Z. Zhang, Int. J. Hydrogen Energy, 2018, 43, 3062.
  • [34] C.V. Picasso, D.A. Safin, I. Dovgaliuk, F. Devred, D. Debecker, H.-W. Li, J. Proost, Y. Filinchuk, Int. J. Hydrogen Energy, 2016, 41, 14377.
  • [35] W. Zhu, J. Zhao, L. Wang, Y.-L. Teng, B.-X. Dong, J. Solid State Chem., 2019, 277, 828.
  • [36] C. Fletcher, Y. Jiang, R. Amal, Chem. Eng. Sci., 2015, 137, 301.
  • [37] M.R. Espinosa, D.J. Charboneau, A.G. de Oliveira, N. Hazari, ACS Catal., 2019, 9, 301.
  • [38] Q.-Q. Ma, T. Liu, S. Li, J. Zhang, X. Chen, H. Guan, Chem. Commun., 2016, 52, 14262.
  • [39] L. Hao, H. Zhang, X. Luo, C. Wu, Y. Zhao, X. Liu, X. Gao, Y. Chen, Z. Liu, J. CO2 Util., 2017, 22, 208.
  • [40] Y. Zhao, T. Wang, Y. Wang, R. Hao, H. Wang, Y. Han, J. Ind. Eng. Chem., 2019, 77, 291.
  • [41] Y. Zhao, T. Wang, Y. Wang, R. Hao, W. Hui, Chem. Eng. J., 2020, 380, 122523.
  • [42] Y. Zhao, Z. Zhang, X. Zhao, R. Hao, Chem. Eng. J., 2016, 297, 11.
  • [43] L. Lombardo, H. Yang, K. Zhao, P.J. Dyson, A. Züttel, ChemSusChem, 2020,13, 2025.
  • [44] K. Kadota, E. Sivaniah, S. Horike, Chem. Commun., 2020, 56, 5111.
  • [45] K. Tominaga, Y. Sasaki, Catal. Commun., 2000, 1, 1.
  • [46] T.G. Ostapowicz, M. Schmitz, M. Krystof, J. Klankermayer, W. Leitner, Angew. Chem., 2013, 125, 12341.
  • [47] L. Wu, Q. Liu, I. Fleischer, R. Jackstell, M. Beller, Nat. Commun., 2014, 5, 3091.
  • [48] Q. Liu, L. Wu, I. Fleischer, D. Selent, R. Franke, R. Jackstell, M. Beller, Chem. Eur. J., 2014, 20, 6888.
  • [49] M. Ali, A. Gual, G. Ebeling, J. Dupont, ChemCatChem, 2014, 6, 2224.
  • [50] A.L. Tarasov, V.I. Isaeva, I.P. Beletskaya, L.M. Kustov, Russ. J. Org. Chem. 2016, 52, 1728.
  • [51] X. Ren, Z. Zheng, L. Zhang, Z. Wang, Ch. Xia, K. Ding, Angew. Chem. Int. Ed., 2017, 56, 310.
  • [52] Z. Liu, Z. Yang, B. Yu, X. Yu, H. Zhang, Y. Zhao, P. Yang, Z. Liu, Org. Lett., 2018, 20, 5130.
  • [53] Y. Wang, Q. Qian, J. Zhang, B.B.A. Bediako, Z. Wang, H. Liu, B. Han, Nat. Commun., 2019, 10, 5395.
  • [54] B. Wang, S. Sun, J.-T. Yu, Y. Jiang, J. Cheng, Org. Lett. 2017, 19, 4319.
  • [55] L. Zeng, H. Li, S. Tang, X. Gao, Y. Deng, G. Zhang, C.-W. Pao, J.-L. Chen, J.-F. Lee, A. Lei, ACS Catal. 2018, 8, 5448.
  • [56] F. Ji, J. Li, X. Li, W. Guo, W. Wu, H. Jiang, J. Org. Chem. 2018, 83, 104.
  • [57] Z. Lian, D.U. Nielsen, A.T. Lindhardt, K. Daasbjerg, T. Skrydstrup, Nat. Commun. 2016, 7, 13782.
  • [58] M. Flinker, S. Lopez, D.U. Nielsen, K. Daasbjerg, F. Jensen, T. Skrydstrup, Synlett, 2017, 28, 2439.
  • [59] X.-D. Lang, L.-N. He, ChemSusChem., 2018, 11, 2062.
  • [60] R. Huacuja, D.J. Graham, C.M. Fafard, C.-H. Chen, B.M. Foxman, D.E. Herbert, G. Alliger, C.M. Thomas, O.V. Ozerov, J. Am. Chem. Soc., 2011, 133, 3820.
  • [61] C.M. Fafard, D. Adhikari, B.M. Foxman, D.J. Mindiola, O.V. Ozerov, J. Am. Chem. Soc., 2007, 129, 10318.
  • [62] Ch.M. Palit, D.J. Graham, Ch.-H. Chen, B. M. Foxman, O.V. Ozerov, Chem. Commun. 2014, 50, 12840.
  • [63] N.D. Ca', P. Bottarelli, A. Dibenedetto, M. Aresta, B. Gabriele, G. Salerno, M. Costa, J. Catal. 2011, 282, 120.
  • [64] D. Madej, A. Konopko, P. Piotrowski, A. Krogul- Sobczak, Catalysis 2020, 10, 877.
  • [65] Q. Chen, S. Wu, S. Zhong, B. Gao, W. Wang, W. Mo, H. Lin, X. Wei, S. Bai, J. Chen, J. Mater. Chem. 2020, 8, 21208.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a26c813e-9f2e-46e9-985c-6df6e0e60027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.