PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flow structure investigation over a pool-rife sequence in a variable width river

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A comprehensive overview of flow characteristics in natural channels with bedforms is a vital issue in river management projects. Pool-rife sequences as common bedforms in the gravel-bed rivers significantly impact flow characteristics and turbulence intensity. The present study was taken by field investigation in the Babolroud River, Iran. A 95 m reach with variable width was chosen in this river and velocity components and shear stress were obtained in different sections. Quadrant analysis was also applied to determine the dominant bursting event in the pool section. The results revealed a phase shift for stream-wise velocity, near-bed velocities, and bed shear stress versus bed profile. In the pool, vertical velocity components were oriented downward near the bed and upward near the water surface, while in the rife section vectors were oriented towards the bed. The findings of quadrant analysis demonstrated the ejections and sweeps as a dominant event close to the bed and water surface, respectively.
Czasopismo
Rocznik
Strony
713--727
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
  • Department of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
  • Natural Disasters Prevention Research Center, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
  • Institute of Applied Technology, Thu Dau Mot University, Thu Dau Mot City, Binh Duong Province, Vietnam
Bibliografia
  • 1. Afzalimehr H, Maddahi MR, Sui J (2017) Bedform characteristics in a Gravel-Bed River. J Hydrol Hydromech 65(4):366–377
  • 2. Afzalimehr H, Barahimi M, Sui J (2019) Non-uniform flow over cobble bed with submerged vegetation strip. In: Proceedings of the institution of civil engineers. Water Management 172(2): 86–101
  • 3. Brahimi M, Afzalimehr H (2019) Effect of submerged vegetation density on flow under favorable pressure gradient. SN Appli Sci 1(1):1–12
  • 4. Buckrell E (2017) The formation and adjustment of a pool-riffle sequence in a gravel-bed flume. The university of British, Columbia
  • 5. Caamaño D, Goodwin P, Buffington JM, Liou JC, Daley-Laursen S (2009) Unifying criterion for the velocity reversal hypothesis in gravel-bed rivers. J Hydraul Eng 135(1):66–70
  • 6. Czech W, Plesiński K, Radecki-Pawlik A, Radecki-Pawlik B (2016) Dominant discharge–an outline of theory and a case study from the Raba river. Acta Sci Pol Form Cir 15(2):41
  • 7. Czernuszenko W, Rowiński PM (2008) Shear stress statistics in a compound channel flow. Hydro-Eng Environ Mech 55(1–2):3–27
  • 8. Dashtpeyma H (2019) Turbulence structures in isolated pool riffle units. University of Waterloo, Ontario
  • 9. Dey S (2014) Fluvial hydrodynamics: hydrodynamic and sediment transport phenomena. Springer Verlag, Berlin
  • 10. Emadzadeh A, Chiew YM, Afzalimehr H (2010) Effect of accelerating and decelerating flows on incipient motion in sand bed streams. Adv Water Resour 33(9):1094–1104
  • 11. Fazlollahi A, Afzalimehr H, Rousseau A (2014) Effect of streamwise pool geometry on shear stresses. Int J Hydraul Eng 3(1):1–9
  • 12. Fazlollahi A, Afzalimehr H, Sui J (2015a) Impacts of pool and vegetated banks on turbulent flow characteristics. Can J Civil Eng 42(12):979–986
  • 13. Fazlollahi A, Afzalimehr H, Sui J (2015b) Effect of slope angle of an artificial pool on distributions of turbulence. Int J Sed Res 30(2):93–99
  • 14. Fuentes-Aguilera P, Caamaño D, Alcayaga H, Tranmer A (2020) The Influence of pool-riffle morphological features on river mixing. Water 12(4):1145
  • 15. Hassan MA, Buckrell E, Chartrand SM, McDowell C (2021) Pool-riffle adjustment due to changes in flow and sediment supply. Water Resour Res. https://doi.org/10.1029/2020WR028048
  • 16. Keylock CJ, Lane SN, Richards KS (2014) Quadrant/octant sequencing and the role of coherent structures in bed load sediment entrainment. J Geophys Res Earth Surf 119(2):264–286
  • 17. Lu SS, Willmarth WW (1973) Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J Fluid Mech 60(03):481–511
  • 18. MacVicar BJ, Rennie CD (2012) Flow and turbulence redistribution in a straight artificial pool. Water Resour Res 48:W02503
  • 19. MacVicar BJ, Roy AG (2007) Hydrodynamics of a forced riffle pool in a gravel-bed river: 1. Mean velocity and turbulence intensity. Water Resour Res 43:W12401
  • 20. MacWilliams MLJ, Wheaton JM, Pasternack GB, Street RL, Kitanidis PK (2006) Flow convergence routing hypothesis for pool riffle maintenance in alluvial rivers. Water Resour Res 42:W10427
  • 21. Maddahi MR, Afzalimehr H, Rowinski PM (2016) Flow Characteristics over a Gravel-bedform: Kaj River Case Study. Acta Geophys 64(5):1779–1796
  • 22. Maity H, Mazumder BS (2013) Conditional statistics of Reynolds shear stress over obstacle marks. ISH J Hydraul Eng 19(3):305–315
  • 23. Motamedi A, Afzalimehr H, Gallichand J, Abadi EFN (2012) Lee angle effects in near bed turbulence: an experimental study on low and sharp angle dunes. Int J Hydr Eng 1(6):68–74
  • 24. Motamedi A, Afzalimehr H, Zenz G, Galoie M (2014) Rans simulations of flow over dunes with low lee and sharp lee angles. In: Advances in hydroinformatics (pp 525–533)
  • 25. Najafabadi E, Afzalimehr H, Sui J (2017) A comparison of two-dimensional and three-dimensional flow structures over artificial pool-riffle sequences. Canad J Civil Eng 44(12):1084–1098
  • 26. Najafabadi EF, Afzalimehr H, Rowiński PM (2018) Flow structure through a fluvial pool-riffle sequence – Case study. J Hydro-Environ Res 19:1–15
  • 27. Najfabadi FE, Afzalimehr H (2019) Comparison of two and three-dimensional flow and habitat modeling in pool-riffle sequences. Iran J Sci Technol, Trans Civil Eng 44(3):991–1000
  • 28. Nasiri Dehsorkhi E, Afzalimehr H, Singh VP (2011) Effect of bed forms and vegetated banks on velocity distributions and turbulent flow structure. J Hydrol Eng 16(6):495–507
  • 29. Nezu L, Nakagawa H (1994) Turbulence in open-channel flows. J Hydraul Eng 120(10):1235–1237
  • 30. Nikora VI, Goring DG (2000) Flow turbulence over fixed and weakly mobile gravel-beds. J Hydraul Eng 126(9):679–690
  • 31. Papangelakis E, Hassan MA (2016) The role of channel morphology on the mobility and dispersion of bed sediment in a small gravel-bed stream. Earth Surf Proc Land 41(15):2191–2206
  • 32. Parvizi P, Afzalimehr H, Singh VP (2021) Impact of pool and vegetated bottom on turbulant flow structure. Int J Hydr Eng 10(1):8–18
  • 33. Przyborowski Ł, Łoboda AM (2021) Identification of coherent structures downstream of patches of aquatic vegetation in a natural environment. J Hydrol 596:126123
  • 34. Przyborowski Ł, Łoboda AM, Bialik RJ (2018) Experimental investigations of interactions between sand wave movements, flow structure, and individual aquatic plants in natural rivers: a case study of potamogeton pectinatus L. Water 10(9):1166
  • 35. Sarkar S, Dey S (2010) Double-averaging turbulence characteristics in flows over a gravel-bed. J Hydraul Res 48(6):801–809
  • 36. Sawyer AM, Pasternack GB, Moir HJ, Fulton AA (2010) Riffle-pool maintenance and flow convergence routing observed on a large gravel-bed river. Geomorphology 114(3):143–160
  • 37. Shahiri Tabarestani E, Afzalimehr H, Pham QB (2021) Validation of double averaged velocity method in a variable width river. Earth Sci Inform 14(4):2265–2278
  • 38. Shahmohammadi R, Afzalimehr H, Sui J (2018) Interaction of turbulence and vegetation patch on the incipient motion of sediment. Can J Civ Eng 45(9):803–816
  • 39. Shahmohammadi R, Afzalimehr H, Sui J (2021) Assessment of critical shear stress and threshold velocity in shallow flow with sand particles. Water 13(994):1–18
  • 40. Singh A, Foufoula-Georgiou E (2013) Effect of migrating bed topography on flow turbulence: implications for modeling sediment transport. Coherent flow structures at Earth’s surface. 323–339
  • 41. Tang C, Li Y, Acharya K, Du W, Gao X, Luo L, Yu Z (2019) Impact of intermittent turbulent bursts on sediment resuspension and internal nutrient release in Lake Taihu China. Environ Sci Pollut Res 26(16):16519–16528
  • 42. Thompson DM (2006) The role of vortex shedding in the scour of pools. Adv Water Resour 29(2):121–129
  • 43. Thompson DM (2011) Areal sorting of bed-load material: The hypothesis of velocity reversal (vol 82, pg 753, 1971). Prog Phys Geogr 35(1):121–122
  • 44. Wilkinson SN, Keller RJ, Rutherfurd ID (2004) Phase-shifts in shear stress as an explanation for the maintenance of pool-riffle sequences. Earth Surf Proc Land 29(6):737–753
  • 45. Wolman MG (1954) A method of sampling coarse river-bed material. Trans Amer Geophys Union 35(6):951–956
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a269aaed-477e-41b0-bf92-13ffdeb0fdc7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.