PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Productivity and reliability improvement in turning Inconel 718 alloy : case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Poprawa produktywności i niezawodności toczenia stopu Inconel 718 : studium przypadku
Języki publikacji
EN PL
Abstrakty
EN
The paper presents an investigation of Inconel 718 alloy finishing turning, using a procedure that allows the optimal cutting data to be found with a maximization of the metal removal rate as the optimization criterion. The optimization procedure does not allow the required values of the chosen surface roughness indicator, cutting force and cutting tool wedge temperature to be exceeded at the same time. The optimization procedure includes the preliminary cutting tests for establishing the range of cutting data (feed and depth of cut) for the correct chip breaking as well as research concerning micro-hardness measurements which enables the cold work zone to be determined and the minimal value of the feed to be defined. The functionality of the algorithm was verified by using the improvement in machining productivity and reliability of an aircraft engine element as an example.
PL
Artykuł opisuje badania obróbki wykończeniowej toczeniem stopu Inconel 718, mające na celu optymalizację parametrów skrawania z uwzględnieniem maksymalizacji objętościowej wydajności obróbki, jako kryterium optymalizacyjnego. Proponowana procedura uwzględnia wymagane w procesie ograniczenia dotyczące wartości parametru chropowatości obrabianej powierzchni, siły skrawania oraz maksymalnej temperatury w strefie skrawania. Procedura optymalizacyjna zawiera wstępne testy mające na celu ustalenie w lokalnych warunkach obróbki użytecznego zakresu parametrów skrawania (posuwu i głębokości skrawania) dla otrzymania korzystnej postaci wiórów. Wykonane pomiary mikrotwardości w strefie skrawania umożliwiły określenie wielkości strefy zgniotu warstwy wierzchniej, co z kolei pozwoliło na zdefiniowanie minimalnej wartości posuwu. Procedurę optymalizacyjną zweryfikowano na przykładzie obróbki wybranej powierzchni elementu silnika lotniczego. Osiągnięto znaczną poprawę produktywności i niezawodności procesu obróbki.
Rocznik
Strony
421--426
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • Production Engineering Institute, Mechanical Faculty Cracow University of Technology Al. Jana Pawła II 37, 31-864 Kraków, Poland
autor
  • Production Engineering Institute, Mechanical Faculty Cracow University of Technology Al. Jana Pawła II 37, 31-864 Kraków, Poland
  • Production Engineering Institute, Mechanical Faculty Cracow University of Technology Al. Jana Pawła II 37, 31-864 Kraków, Poland
Bibliografia
  • 1. Aruna M, Dhanalaksmi V. Design optimization of cutting parameters when turning Inconel 718 with cermet inserts. World Academy of Science, Engineering and Technology 2012; 61:952–956.
  • 2. Arunachalam RM, Mannan MA, Spowage AC. Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools. International Journal of Machine Tools and Manufacture 2004; 44:879–887.
  • 3. Arunachalam RM, Mannan MA, Spowage AC. Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools. International Journal of Machine Tools and Manufacture 2004; 44:1481–1491.
  • 4. Arunachalam RM, Mannan MA. Machinability of nickel-based high temperature alloys. Machining Science and Technology 2000; 4:127–168.
  • 5. Axinte DA, Gindy N, Fox K, Unanue I. Process monitoring to assist the workpiece surface quality in machining. Machine Tools and Manufacture 2004; 44:1091–1108.
  • 6. Choudhoury IA, El-Baradic MA. Machinability of nickel-base super alloys: a general review. Materials Processing Technology 1998; 77:278–284.
  • 7. Choudhoury SK, Appa Rao IVK. Optimization of cutting parameters for maximizing tool life. International Journal of Machine Tools & Manufacture 1999; 39:343–353.
  • 8. D’Addona D, Segreto T, Simeone A, Teti R. ANN tool wear modelling in the machining of nickel superalloy industrial products. CIRP Journal of Manufacturing Science and Technology 2011; 4:33–37.
  • 9. Devillez A, Schneider F, Dominiak S, Dudzinski D, Larrouquere D. Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools. Wear 2007; 262:931–942.
  • 10. Dudzinski D, Devilleza A, Moufkia A, Larrouquèreb D, Zerroukib V, Vigneaub J. A review of developments towards dry and high Speer machining of Inconel 718 alloy. International Journal of Machine Tools and Manufacture 2004; 44:439–456.
  • 11. El-Hossainy TM, El-Zoghby AA, Badr MA, Maalawi KY, Nasr MF. Cutting Parameter Optimization when Machining Different Materials. Materials and Manufacturing Processes 2010; 25:1101–1114.
  • 12. Ezugwu EO, Fadarea DA, Bonneya J, Da Silvaa RB, Salesa WF. Modelling the correlation between cutting and process parameters In high-speed machining of Inconel 718 alloy using an artificial neural network. International Journal of Machine Tools & Manufacture 2005; 45:1375–1385.
  • 13. Ezugwu EO. Key improvements in the machining of difficult-to-cut aerospace superalloys. International Journal of Machine Tools and Manufacture 2005; 45:1353–1367.
  • 14. Fang N, Wu Q. A comparative study of the cutting forces in high speed machining of Ti–6Al–4V and Inconel 718 with a round cutting edge tool. Journal of Materials Processing Technology 2009; 209:4385–4389.
  • 15. Gullu A, Karabulut S. Dynamic Chip Breaker Design for Inconel 718 Using Positive Angle Tool Holder. Materials and Manufacturing Processes 2008; 23:852–857.
  • 16. Guo YB, Li W, Jawahir IS. Surface Integrity Characterization and Prediction in Machining of Hardened and Difficult-To-Machine Alloys: A State-Of-Art Research Review and Analysis. Machining Science and Technology 2009; 13:437-470.
  • 17. Jonak J, Podgórski J, Zubrzycki J. Wybrane zagadnienia mechaniki procesu skrawania materiałów. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2001; 5:27–31.
  • 18. Kitagawa T, Kubo A, Maekawa K. Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti-6Al-6V-2Sn. Wear 1997; 202:142–148.
  • 19. Krain HR, Sharman ARC, Ridgway K. Optimization of tool life and productivity when end milling Inconel 718. Materials Processing Technology 2007; 189:153–161.
  • 20. Liao YS, Shiue RH. Carbide tool wear mechanism in turning of Inconel 718 superalloy. Wear. 1996; 193:16–24.
  • 21. Nalbant M, Altin A, Gokkaya H. The effect of cutting speed and cutting tool geometry on machinability properties of nickel-base Inconel 718 super alloys. Materials&Design 2007; 28:1334–1338.
  • 22. Narutaki N, Yamane Y. Machining of difficult-to-cut materials. International Journal of the Japan Society for Precision Engineering 1993; 27:307–310.
  • 23. Narutaki N, Yamanea Y, Hayashib K, Kitagawac T, Uehara K. High-speed machining of Inconel 718 with ceramic tools. CIRP Annals – Manufacturing Technology 1993; 42:103–106.
  • 24. Oktem H, Erzurumlu T, Kurtaran H. Application of response surface methodology in the optimization of cutting conditions for surface roughness. Journal of Materials Processing Technology 2005; 170:11–16.
  • 25. Outeiro JC, Pina JC, M’Saoubi R, Pusavec F, Jawahir IS. Analysis of residual stresses induced by dry turning of difficult-to-machine materials. CIRP Annals – Manufacturing Technology 2008; 57:77–80.
  • 26. Pawade RS, Joshi S. Mechanism of chip formation in high-speed turning of Inconel 718. Machining Science and Technology 2011; 15:132–152.
  • 27. Pawade RS, Joshi S. Multi-objective optimization of surface roughness and cutting forces in high-speed turning of Inconel 718 using Taguchi grey relational analysis (TGRA). The International Journal of Advanced Manufacturing Technology 2011; 56:47–62.
  • 28. Rusinek R. Drgania w procesie skrawania stopu tytanu. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2010; 3:48–55.
  • 29. Sandvik Coromant, Aerospace Engine – application guide 2004.
  • 30. Senthilkumaar JS, Selvarani P, Arunachalam RM. Intelligent optimization and selection of machining parameters in finish turning and facing of Inconel 718. The International Journal of Advanced Manufacturing Technology 2012; 58:885–894.
  • 31. Sharman ARC, Hughes JI, Ridgway K. An analysis of the residual stresses generated in Inconel 718TM when turning. Journal of Materials Processing Technology 2006; 173:359–367.
  • 32. Słodki B, Zębala W. The analysis of selected chipbreakers efficiency in difficult-to-cut material turning in local operating features. Naukowyj Żurnal, National University in Chmielnicki, Ukraine 2007; 1:179–189.
  • 33. Taranenko G, Taranenko W, Świć A, Szabelski J. Modelowanie układów dynamicznych obróbki skrawaniem wałów o małej sztywności. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2010; 4:4–15.
  • 34. Thakur DG, Ramamoorthy B, Vijayaraghavan L. A Study on the Parameters in High-Speed Turning of Superalloy Inconel 718. Materials and Manufacturing Processes 2009; 24:497–503.
  • 35. Wrigth PK, Chow JG. Deformation characteristic of nickel alloys during machining. Journal of Engineering Materials and Technology 1982; 104:85–93.
  • 36. Yoo JT, Yoon JH, Lee HS, Youn SK. Material characterization of Inconel 718 from free bulging test at high temperature. Journal of Mechanical Science and Technology 2012; 26:2101–2105.
  • 37. Zębala W, Słodki B. Some aspects of chipbreakers efficiency in difficult-to-cut materials turning. Proc. of Int. Users’ Conf. „Modelling Technology – Machining Solution”, Minneapolis, MN, USA 2008; 14:1-14.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2662e3f-f908-4340-900f-80d423a31bb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.