PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Airlift bioreactor under bio-consumption environment: Mass transfer study of metabolic gases

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current study focused on tracking the biogas pathways in the internal loop airlift bioreactor under conditions of metabolic consumption. The focus of the investigation was simultaneously set on the wastewater produced by the dairy industry. Two stages were used to conduct this investigation. Using the Taguchi model, an optimization study of the bioreactor's operating conditions was conducted as the first step. The experimental findings demonstrated a distinct impact of the biogas flow rate on the overall mass transfer coefficient compared with the other operating parameters (liquid type and volume). By analyzing the S/N ratio and ANOVA analysis, the best level was determined for each parameter studied. The optimal factors were also identified (flow rate = 50, volume = 5.5, type of sol.= whey). These optimization values were then applied in real bacteria bio-consumption. The biogas consumed by the organism was also reduced from 50 to 25 liters/hour, thus saving 50 % of the energy consumed.
Rocznik
Strony
260--272
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
  • Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
Bibliografia
  • 1. Abbas, R. N., & Abbas, A. S. (2022). The Taguchi approach in studying and optimizing the electro- Fenton oxidation to reduce organic contaminants in refinery wastewater using novel electrodes. Engineering, Technology and Applied Science Research, 12(4), 8928–8935. https://doi.org/10.48084/ etasr.5091
  • 2. Aiba, S., Humphrey, A. E., & Millis, N. F. (1973). Biochemical engineering. Academic press. https://doi.org/https://dx.doi.org/10.1016/0958-1669(95)80030-1
  • 3. Akita, K., & Yoshida, F. (1973). Gas holdup and volumetric mass transfer coefficient in bubble columns. effects of liquid properties. Industrial and Engineering Chemistry Process Design and Development, 12(1), 76–80. https://doi.org/10.1021/ i260045a015
  • 4. Al-Alawy, A. F., & Al-Ameri, M. K. (2017). Treatment of simulated oily wastewater by ultrafiltration and nanofiltration processes. Iraqi Journal of Chemical and Petroleum Engineering, 18(1), 71–85. https://doi.org/10.31699/ijcpe.2017.1.6
  • 5. Al-Dulaimi, S. L., & Al-Yaqoobi, A. M. (2021). Separation of oil/water emulsions by microbubble air flotation. IOP Conference Series: Materials Science and Engineering, 1076(1), 012030. https://doi.org/10.1088/1757-899x/1076/1/012030
  • 6. Al-Hemiri, A., & D. Selman, M. (2011). Estimation of mass transfer coefficients in a packed distillation column using batch mode. Iraqi Journal of Chemical and Petroleum Engineering, 12(1), 13–21. https://doi.org/10.31699/ijcpe.2011.1.2
  • 7. Al-Mashhadani, M. K. H. (2017). Heat transfer and hydrodynamic in internal jacket airlift bioreactor with microbubble technology. Iraqi Journal of Chemical and Petroleum Engineering, 18(4), 35–45. https://doi.org/10.31699/ijcpe.2017.4.4
  • 8. AL-Mashhadani, M. K. H., Wilkinson, S. J., & Zimmerman, W. B. (2015). Airlift bioreactor for biological applications with microbubble mediated transport processes. Chemical Engineering Science, 137, 243–253. https://doi.org/10.1016/j.ces.2015.06.032
  • 9. Al-Yaqoobi, A. M. G., & Zimmerman, W. B. (2022). Relative wettability measurement of porous diffuser and its impact on the generated bubble size. Chemical and Process Engineering - Inzynieria Chemiczna i Procesowa, 43(1), 45–55. https://doi.org/10.24425/cpe.2022.140810
  • 10. Al-yaqoobi, A. M., Al-dulaimi, S. L., & Salman, R. H. (2024). Explore the impact of surfactant type on the stability and separation efficiency of oil-water emulsions of real wastewater from Al-Basrah crude oil using microbubble air flotation. Journal of Ecological Engineering, 25(5), 367–378. https://doi.org/10.12911/22998993/185307
  • 11. Andrew, S. P. S. (1982). Gas-liquid mass transfer in microbiological reactors. In: what’s new in absorption with chemical reaction, symp., 60(1), 3–13. http://pascal-francis.inist.fr/vibad/index.php?action =getRecordDetail&idt=PASCAL82X0093085
  • 12. Bian, J., Hu, Y., Wang, X., Xie, M., Jiang, L., Song, Y., Zhang, X., Fang, G., Liu, S., Zhong, Y., & Zhao, C. (2024). Rapid removal of multidrug-resistant bacteria and multidrug-resistant genes in drinking water and hospital wastewater using permanganate/bisulfite oxidation. Chemical Engineering Journal, 498, 155448. https://doi.org/10.1016/j.cej.2024.155448
  • 13. Çalik, P., Yilgör, P., Ayhan, P., & Demir, A. S. (2004). Oxygen transfer effects on recombinant benzaldehyde lyase production. Chemical Engineering Science, 59(22–23), 5075–5083. https://doi.org/10.1016/j.ces.2004.07.070
  • 14. Chaffin, S., Monk, N. A. M., Rees, J. M., & Zimmerman, W. B. (2024). Dissolved nutrient gas uptake and fluid mixing by bubble-mediated mass transfer in tall fermenters — A theoretical study. Food and Bioproducts Processing, 145(June 2023), 136–147. https://doi.org/10.1016/j.fbp.2024.03.004
  • 15. Coimbra, J. C., Batista, P. H. R., Paz, D. G. S., Oliveira, P. S., & Prata, D. M. (2024). CFD analysis of multiphase flow in an airlift reactor: superficial velocity and gas holdup influence on the loop recirculation. Brazilian Journal of Chemical Engineering, 1–18. https://doi.org/10.1007/s43153-024-00494-4
  • 16. de Mello, A. F. M., de Souza Vandenberghe, L. P., Herrmann, L. W., Letti, L. A. J., Burgos, W. J. M., Scapini, T., Manzoki, M. C., de Oliveira, P. Z., & Soccol, C. R. (2024). Strategies and engineering aspects on the scale-up of bioreactors for different bioprocesses. Systems Microbiology and Biomanufacturing, 4(2), 365–385. https://doi.org/10.1007/ s43393-023-00205-z
  • 17. Fu, C. C., Wu, W. T., & Lu, S. Y. (2003). Performance of airlift bioreactors with net draft tube. Enzyme and Microbial Technology, 33(4), 332–342. https://doi.org/10.1016/S0141-0229(03)00151-0
  • 18. Galaction, A. I., Cascaval, D., Oniscu, C., & Turnea, M. (2004). Prediction of oxygen mass transfer coefficients in stirred bioreactors for bacteria, yeasts and fungus broths. Biochemical Engineering Journal, 20(1), 85–94. https://doi.org/10.1016/j.bej.2004.02.005
  • 19. Garcia-Ochoa, F., & Gomez, E. (2009). Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnology Advances, 27(2), 153–176. https://doi.org/10.1016/j. biotechadv.2008.10.006
  • 20. García-Ochoa, F., Castro, E. G., & Santos, V. E. (2000). Oxygen transfer and uptake rates during xanthan gum production. Enzyme and Microbial Technology, 27(9), 680–690. https://doi.org/10.1016/S0141-0229(00)00272-6
  • 21. Garcia-Ochoa, F., Gomez, E., Santos, V. E., & Merchuk, J. C. (2010). Oxygen uptake rate in microbial processes: An overview. Biochemical Engineering Journal, 49(3), 289–307. https://doi.org/10.1016/j.bej.2010.01.011
  • 22. Googerdchian, F., Moheb, A., Emadi, R., & Asgari, M. (2018). Optimization of Pb(II) ions adsorption on nanohydroxyapatite adsorbents by applying Taguchi method. Journal of Hazardous Materials, 349(February), 186–194. https://doi.org/10.1016/j. jhazmat.2018.01.056
  • 23. Gouveia, E. R., Hokka, C. O., & Badino, A. C. (2003). The effects of geometry and operational conditions on gas holdup, liquid circulation and mass transfer in an airlift reactor. Brazilian Journal of Chemical Engineering, 20(4), 363–374. https://doi.org/10.1590/S0104-66322003000400004
  • 24. H. Salman, R. (2019). Removal of manganese ions (Mn2+) from a simulated wastewater by electrocoagulation/ electroflotation technologies with stainless steel mesh electrodes: process optimization based on Taguchi approach. Iraqi Journal of Chemical and Petroleum Engineering, 20(1), 39– 48. https://doi.org/10.31699/IJCPE.2019.1.6
  • 25. Ho, C. S., & Oldshue, J. Y. (1987). Biotechnology processes: scale-up and mixing. American Institute of Chemical Engineers, 267. https://lccn.loc.gov/87014393
  • 26. Ibrahim, H. M., & Salman, R. H. (2022). Real wastewater treatment by electrocoagulation-electro-oxidation combined system: Optimization using Taguchi approach. Egyptian Journal of Chemistry, 65(3), 135–145. https://doi.org/10.21608/ ejchem.2021.88245.4247
  • 27. Jassim, N., & A. Abdulkhaleq, F. (2014). Performance evaluation of three phase spray direct contact heat exchanger. Iraqi Journal of Chemical and Petroleum Engineering, 15(4), 37–45. https://doi.org/10.31699/ijcpe.2014.4.5
  • 28. Kawase, Y., Halard, B., & Moo‐Young, M. (1992). Liquid‐Phase mass transfer coefficients in bioreactors. Biotechnology and Bioengineering, 39(11), 1133–1140. https://doi.org/10.1002/ bit.260391109
  • 29. Keenleyside, W. (2019). Microbiology: Canadian Edition. Pressbooks Toronto, 640–701. https:// ecampusontario.pressbooks.pub/microbio/chapter/ the-effects-of-ph-on-microbial-growth/
  • 30. Kilonzo, P. M., Margaritis, A., Bergougnou, M. A., Yu, J., & Ye, Q. (2007). Effects of geometrical design on hydrodynamic and mass transfer characteristics of a rectangular-column airlift bioreactor. Biochemical Engineering Journal, 34(3), 279–288. https://doi.org/10.1016/j.bej.2006.12.014
  • 31. Li, G. Q., Yang, S. Z., Cai, Z. L., & Chen, J. Y. (1995). Mass transfer and gas-liquid circulation in an airlift bioreactor with viscous non-Newtonian fluids. Chemical Engineering Journal and the Biochemical Engineering Journal, 56(2), B101–B107. https://doi.org/10.1016/0923-0467(94)06065-C
  • 32. Lingwei, Z., Zhenpeng, L., Jun, L., Dongmei, Y., & Fuchuan, H. (2024). CFD simulation study of internal mixing and flow of a modified airlift bioreactor. International Journal of Chemical Reactor Engineering, 22(5), 571–581. https://doi.org/10.1515/ijcre-2023-0169
  • 33. Mechanics, A., Science, E., Diego, S., Jolla, L., & Diego, S. (1999). Influence of geometry and solids concentration on the hydrodynamics and mass transfer of a rectangular airlift reactor for marine sediment and soil bioremediation. The Canadian Journal for Chemical Engineering, 77(4), 660–669. https://doi.org/10.1002/cjce.5450770406
  • 34. Merchuk, J. C., Ladwa, N., Cameron, A., Bulmer, M., & Pickett, A. (1994). Concentric‐tube airlift reactors: Effects of geometrical design on performance. AIChE Journal, 40(7), 1105–1117. https://doi.org/10.1002/aic.690400703
  • 35. Mulakhudair, A. R., Al-Mashhadani, M. K. H., & Kokoo, R. (2022). Tracking of dissolved oxygen distribution and consumption pattern in a bespoke bacterial growth system. Chemical Engineering and Technology, 45(9), 1683–1690. https://doi.org/10.1002/ceat.202200209
  • 36. Poništ, J., Dubšíková, V., Schwarz, M., & Samešová, D. (2021). Methods of processing whey waste from dairies. a review. Environment Protection Engineering, 47(4), 67–84. https://doi.org/10.37190/epe210405
  • 37. Razmi, B., & Ghasemi-Fasaei, R. (2018). Investigation of Taguchi optimization, equilibrium isotherms, and kinetic modeling for phosphorus adsorption onto natural zeolite of clinoptilolite type. Adsorption Science and Technology, 36(7–8), 1470–1483. https://doi.org/10.1177/0263617418779738
  • 38. Salahi, A., & Mohammadi, T. (2011). Oily wastewater treatment by ultrafiltration using Taguchi experimental design. Water Science and Technology, 63(7), 1476–1484. https://doi.org/10.2166/ wst.2011.383
  • 39. Van’T Riet, K. (1979). Review of measuring methods and results in nonviscous gas-liquid mass transfer in stirred vessels. Industrial and Engineering Chemistry Process Design and Development, 18(3), 357–364. https://doi.org/10.1021/i260071a001
  • 40. Williams Kupolati, K., Busari, A. A., Rotimi Sadiku, E., Frattari, A., Adeboje, A. A., Kambole, C., Mojapelo, K. S., Maite, M. R., Motsilanyane, N., Bezuidenhout, W., Eze, A. A., David Ibrahim, I., Ayeleru, O. O., Adegbola, T. A., Snyman, J., Moloisane, R. J., Mokae, M. M., Ndambuki, J. M., Agboola, O., … Salim, R. W. (2020). Inhibition of bacterial growth and removal of antibiotic-resistant bacteria from wastewater. In Antibiotic Materials in Healthcare. Elsevier Inc. https://doi.org/10.1016/B978-0-12-820054-4.00010-0
  • 41. Zevenhoven, R. (2012). Mass transfer, Mass transfer,. Fortran Programs for Chemical Process Design, Analysis, and Simulation, 469–589.
  • 42. Zhou, X., Guo, Z., Tang, X., Wang, W., Wu, M., Song, B., Xiang, Y., Li, Y., Xiong, W., Huang, D., & Zhou, C. (2024). Sulfate radical-based advanced oxidation processes for simultaneous removal of antibiotic-resistant bacteria and antibiotic resistance genes and the affecting factors. Chemical Engineering Journal, 498, 155149. https://doi.org/10.1016/j.cej.2024.155149
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a25f2871-008a-49f8-857e-dfc747223b8c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.