PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Acidified water glass in the selective flotation of scheelite from calcite, part II: species in solution and related mechanism of the depressant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sodium silicate is one of the main depressants against calcite and fluorite in the scheelite flotation industry. In the first part of this article, the authors acidified sodium silicate (AWG) with three acids (sulfuric, oxalic and hydrochloric) to improve its performance. Results showed that acidified water glass outperforms alkaline water glass in terms of selectivity: it increases mainly the grade by further depressing silicates and calcium-bearing minerals. In most cases, AWG requires lower dosages to do so. The effect of acidified water glass is evaluated through Mineral Liberation Analysis (MLA), froth analysis, Raman and Nuclear Magnetic Resonance (NMR) spectroscopy in order to hypothesize its mechanism. MLA shows that AWG affects silicates and sulfides more intensely than semi-soluble salttype minerals. Froth observations indicate other species in solution associated to the acid having an impact on the flotation results. Raman spectroscopy and NMR measurements indicate that the solution undergoes deep depolymerization when water glass is acidified. Lower molecular weight silica species, specifically Si-O monomers such as SiO(OH)3- will be responsible for the depression of the gangue minerals and are the drivers of the selectivity of AWG, more than orthosilicic acid. Depolymerization is more or less effective depending on the mass ratio of the acid to water glass and depending on the acid.
Rocznik
Strony
797--817
Opis fizyczny
Bibliogr. 57 poz.,rys., tab.
Twórcy
  • Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, Chemnitzer Straße 40, 09599 Freiberg, Germany
autor
  • Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
  • Bioanalytical Chemistry, TU Dresden, Bergstraße 66, 01609 Dresden, Germany
autor
  • Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, Chemnitzer Straße 40, 09599 Freiberg, Germany
  • Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, Chemnitzer Straße 40, 09599 Freiberg, Germany
Bibliografia
  • ATADEMIR, M.R., KITCHENER, J.A., SHERGOLD, H.L., 1980. The surface chemistry and flotation of scheelite, II. Flotation “collectors”. International Journal of Mineral Processing 80, 8(1), 9-16.
  • AZIZI, D., LARACHI, F., 2018. Surface interactions and flotation behavior of calcite, dolomite and ankerite with alkyl hydroxamic acid bearing collector and sodium silicate. Colloids and Surfaces A: Physicochemical and Engineering Aspects 537, 126-138.
  • BALINSKI, A., 2019. Grundlagenuntersuchungen zur Aufschließbarkeit von Eudialyt und der sich anschließenden Abtrennung der Seltenerd-Gruppe. Fakultät für Werkstoffwissenschaft und Werkstofftechnologie, Technische Universität Bergakademie Freiberg, Freiberg, Germany, p. 139.
  • BELTON, D.J., DESCHAUME, O., PERRY, C.C., 2012. An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances. FEBS J 279(10), 1710-1720.
  • BERLINSKII, A.I., KLYUEVA, N.D., 1972. Interaction of alkaline and acidic water glass with some calcium minerals studied by infrared spectroscopic method. Obogashchenie Rud 17, 16-18.
  • BULATOVIC, S., 2007. Handbook of Flotation Reagents: Chemistry, Theory and Practice and Flotation of Sulfide Ores. 1st Edition, Elsevier.
  • CASAS, J.M., ALVAREZ, F., CIFUENTES, L., 2000. Aqueous speciation of sulfuric acid–cupric sulfate solutions. Chemical Engineering Science 55(24), 6223-6234.
  • CASTRO, S., MIRANDA, C., TOLEDO, P., LASKOWSKI, J.S., 2013. Effect of frothers on bubble coalescence and foaming in electrolyte solutions and seawater. International Journal of Mineral Processing 124, 8-14.
  • CORDES, P., 2006. Streng biomimetische Modellsysteme für die Biomineralisation von Siliciumdioxid auf der Basis von Polyaminen oder Alkylglycosiden. Naturwissenschafltiche Fakultät, Universität Hannover, Hannover, Germany, p. 175.
  • COX, R.A., HALDNA, U.L., IDLER, K.L., YATES, K., 1981. Resolution of Raman spectra of aqueous sulfuric acid mixtures using principal factor analysis. Canadian Journal of Chemistry 59(17): 2591-2598.
  • CRAIG, V.S.J., 2004. Bubble coalescence and specific-ion effects. Current Opinion in Colloid & Interface Science 9(1), 178-184.
  • DENG, J., LIU, C., YANG, S., LI, H., LIU, Y., 2019. Flotation separation of barite from calcite using acidified water glass as the depressant. Colloids and Surfaces A: Physicochemical and Engineering Aspects 579, 123605.
  • DENG, R., YANG, X., HU, Y., KU, J., ZUO, W., MA, Y., 2018. Effect of Fe(II) as assistant depressant on flotation separation of scheelite from calcite. Minerals Engineering 118, 133-140.
  • DONG, L., JIAO, F., QIN, W., ZHU, H., JIA, W., 2018. Effect of acidified water glass on the flotation separation of scheelite from calcite using mixed cationic/anionic collectors. Applied Surface Science 444, 747-756.
  • FANDRICH, R., GU, Y., BURROWS, D., MOELLER, K., 2007. Modern SEM-based mineral liberation analysis. International Journal of Mineral Processing 84(1–4), 310-320.
  • FENG, B., LUO, X., WANG, J., WANG, P., 2015. The flotation separation of scheelite from calcite using acidified sodium silicate as depressant. Minerals Engineering 80, 45-49.
  • FOUCAUD, Y., FILIPPOVA, I.V., FILIPPOV, L.O., 2019a. Investigation of the depressants involved in the selective flotation of scheelite from apatite, fluorite, and calcium silicates: Focus on the sodium silicate/sodium carbonate system. Powder Technology 352, 501-512.
  • FOUCAUD, Y., BADAWI, M., FILIPPOV, L.O., BARRES, O., FILIPPOVA, I.V., LEBEGUE, S., 2019b. Synergistic adsorptions of Na2CO3 and Na2SiO3 on calcium minerals revealed by spectroscopic and ab initio molecular dynamics studies. Chemical Science Journal 10(43), 9928-9940.
  • FOUCAUD, Y., LEBÈGUE, S., FILIPPOV, L.O., FILIPPOVA, I.V., BADAWI, M., 2018. Molecular Insight into Fatty Acid Adsorption on Bare and Hydrated (111) Fluorite Surface. The Journal of Physical Chemistry B 122(51), 12403-12410.
  • FUERSTENAU, M., GUTIERREZ, G., ELGILLANI, D.A., 1968. The influence of sodium silicate in nonmetallic flotation systems. Transactions AIME, New York, 319-323.
  • GAO, Y., GAO, Z., SUN, W., HU, Y., 2016. Selective flotation of scheelite from calcite: A novel reagent scheme. International Journal of Mineral Processing, 154, 10-15.
  • HALASZ, I., AGARWAL, M., LI, R., MILLER, N., 2007. Vibrational spectra and dissociation of aqueous Na2SiO3 solutions. Catalysis Letters 117(1), 34-42.
  • HEINIG, T., BACHMANN, K., TOLOSANA-DELGADO, R., VAN DEN BOOGAART, K.G., GUTZMER, J., 2015. Monitoring gravitational and particle shape settling effects on MLA sample preparation. IAMG Conference 2015, Freiberg, Germany.
  • HOANG, D.H., HEITKAM, S., KUPKA, N., HASSANZADEH, A., PEUKER, U.A., RUDOLPH, M., 2018. Froth properties and entrainment in lab-scale flotation: A case of carbonaceous sedimentary phosphate ore. Chemical Engineering Research and Design 142, 100-110.
  • HOANG, D., SAQURAN, S., HASSANZADEH, A., KUPKA, N., MICHAUX, B., SCHACH, E., SPRENGER, H., RUDOLPH, M., 2019. Impact of milling condition on the flotation of Vietnamese silicaceous carbonaceous apatite ore, IMPC Eurasia 2019. Antalya, Turkey, Turkish Mining Development Foundation, 841-852.
  • ILER, R.K., 1979. The Chemistry of Silica: Solubility, Polymerizationm Colloid and Surface Properties and Biochemistry. John Wiley & Sons, USA.
  • KINDERMANN, G., 2019. R get and restrain number of local maxima position and value. Stackoverflow.
  • KUPKA, N., MÖCKEL, R., RUDOLPH, M., 2020a. Acidified water glass in the selective flotation of scheelite from calcite, Part I: performance and impact of the acid type. Physicochemical Problems of Mineral Processing 56(2), 238-251.
  • KUPKA, N., RUDOLPH, M., 2018, Role of sodium carbonate in scheelite flotation – A multi-faceted reagent. Minerals Engineering 129, 120-128.
  • KUPKA, N., TOLOSANA-DELGADO, R., SCHACH, E., BACHMANN, K., HEINIG, T., RUDOLPH, M., 2020b. R as an environment for data mining of process mineralogy data: A case study of an industrial rougher flotation bank. Minerals Engineering 146, 106111.
  • LIU, C., FENG, Q., ZHANG, G., CHEN, W., CHEN, Y., 2016, Effect of depressants in the selective flotation of scheelite and calcite using oxidized paraffin soap as collector. International Journal of Mineral Processing 157, 210-215.
  • LIU, X., HUANG, G.-Y., LI, C.-X., CHENG, R.-J., 2015. Depressive effect of oxalic acid on titanaugite during ilmenite flotation. Minerals Engineering 79, 62-67.
  • LUNEVICH, L., 2019. Aqueous Silica and Silica Polymerisation, In Desalination - Challenges and Opportunities. IntechOpen, Online.
  • MARINAKIS, K.I., SHERGOLD, H.L., 1985. Influence of sodium silicate addition on the adsorption of oleic acid by fluorite, calcite and barite. International Journal of Mineral Processing 14(3), 177-193.
  • MARTINS, J.I., AMARANTE, M.M., 2012. Scheelite Flotation From Tarouca Mine Ores. Mineral Processing and Extractive Metallurgy Review 34(6), 367-386.
  • MICHAUX, B., RUDOLPH, M., REUTER, M., 2018. Challenges in predicting the role of water chemistry in flotation through simulation with an emphasis on the influence of electrolytes. Minerals Engineering 125, 252-264.
  • MISHRA, S.K., 1982. Electrokinetic properties and flotation behaviour of apatite and calcite in the presence of sodium oleate and sodium metasilicate. International Journal of Mineral Processing 9(1), 59-73.
  • NEETHLING, S.J., BRITO-PARADA, P.R., 2018. Predicting flotation behaviour – The interaction between froth stability and performance. Minerals Engineering 120, 60-65.
  • PATIL, D., NAYAK, U., 1985. Selective Flotation of Scheelite and Calcite.
  • RAO, K.H., FORSSBERG, K.S.E., 1991. Mechanism of oleate interaction on salt-type minerals Part III. Adsorption, zeta potential and diffuse reflectance FT-IR studies of scheelite in the presence of sodium oleate. Colloids and Surfaces 54, 161-187.
  • SAKSENA, B. D., 1940. Raman Spectra of some esters of di-carboxylic acids. Proceedings of the Indian Academy of Sciences - Section A 12(4): 416.
  • SCHACH, E., LEISTNER, T., RUDOLPH, M., 2017. The smaller the valuables, the poorer the recovery - Is that always true? Flotation '17, ed. MEI, Cape Town, South Africa.
  • SCHACH, E., BUCHMANN, M., TOLOSANA-DELGADO, R.,, LEIßNER, T., KERN, M., VAN DEN BOOGAART, K.G., RUDOLPH, M., PEUKER, U.A., 2019. Multidimensional characterization of separation processes – Part 1: Introducing kernel methods and entropy in the context of mineral processing using SEM-based image analysis, Minerals Engineering 137, 78-86.
  • SJÖBERG, S., 1996. Silica in aqueous environments. Journal of Non-Crystalline Solids 196, 51-57.
  • SPINDE, K., 2012. Molekulare Mechanismen der Wechselwirkung von Kieselsäure mit organischen Templaten bei der biologichen/biomimetischen Silikatbildung, Fakultät Mathematik und Naturwissenschaften, Technischen Universität Dresden, Dresden, 109.
  • SUTHERLAND, K.L., 1948. Physical chemistry of flotation. XI: Kinetics of the flotation process, Journal of Physical and Colloid Chemistry 52(2), 394-425.
  • TIAN, J., XU, L., SUN, W., ZENG, X., FANG, S., HAN, H., HONG, K., HU, Y., 2019. Use of Al2(SO4)3 and acidified water glass as mixture depressants in flotation separation of fluorite from calcite and celestite. Minerals Engineering 137, 160-170.
  • VIDAL, L., JOUSSEIN, E., COLAS, M., CORNETTE, J., SANZ, J., SOBRADOS, I., GELET, J.L., ABSI, J., ROSSIGNOL, S., 2016. Controlling the reactivity of silicate solutions: A FTIR, Raman and NMR study. Colloids and Surfaces A: Physicochemical and Engineering Aspects 503, 101-109.
  • WERES, O., YEE, A., TSAO, L., 1980. Kinetics of Silica Polymerization. Report LBL-7033. Earth Sciences Division, Lawrence Berkeley Laboratory, University of California.
  • WILHELM, S., KIND, M., 2015. Influence of pH, Temperature and Sample Size on Natural and Enforced Syneresis of Precipitated Silica. Polymers 7(12), 2504-2521.
  • YANG, X., ROONASI, P., HOLMGREN, A., 2008. A study of sodium silicate in aqueous solution and sorbed by synthetic magnetite using in situ ATR-FTIR spectroscopy. Journal of Colloid and Interface Science 328(1), 41-47.
  • YANG, Y., XU, L., TIAN, J., LIU, Y., HAN, Y., 2016. Selective flotation of ilmenite from olivine using the acidified water glass as depressant. International Journal of Mineral Processing 157, 73-79.
  • YIANATOS, J., CONTRERAS, F., 2010. Particle entrainment model for industrial flotation cells. Powder Technology 197(3), 260-267.
  • YIN, W.Z., WANG, J.Z., SUN, Z.M., 2015. Structure–activity relationship and mechanisms of reagents used in scheelite flotation. Rare Metals 34(12), 882-887.
  • YONGXIN, L., CHANGGEN, L., 1983. Selective flotation of scheelite from calcium minerals with sodium oleate as a collector and phosphates as modifiers. I. Selective flotation of scheelite. International Journal of Mineral Processing 10(3), 205-218.
  • ZHOU, Q., LU, S., 1992. Acidized sodium silicate - an effective modifier in fluorite flotation. Minerals Engineering 5(3), 435-444.
  • ZHUL, R.W., AMJAD, Z., 2013. Solution chemistry impact on silica polymerization by inhibitors. In Mineral Scales in Biological and Industrial Systems, 1st Edition. CRC Press: 174-200.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a25c44d4-18db-4f8e-9168-831d95e3eb7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.