Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Standardized processes are important for correctly carrying out activities in an organization. Often the procedures they describe are already in operation, and the need is to understand and formalize them in a model that can support their analysis, replication and enforcement. Manually building these models is complex, costly and error-prone. Hence, the interest in automatically learning them from examples of actual procedures. Desirable options are incrementality in learning and adapting the models, and the ability to express triggers and conditions on the tasks that make up the workflow. This paper proposes a framework based on First-Order Logic that solves many shortcomings of previous approaches to this problem in the literature, allowing to deal with complex domains in a powerful and flexible way. Indeed, First-Order Logic provides a single, comprehensive and expressive representation and manipulation environment for supporting all of the above requirements. A purposely devised experimental evaluation confirms the effectiveness and efficiency of the proposed solution.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
413--443
Opis fizyczny
Bibliogr. 33 poz., wykr.
Twórcy
autor
- Dipartimento di Informatica – Università di Bari, Italy
autor
- Dipartimento di Informatica – Università di Bari, Italy
Bibliografia
- [1] van der Aalst, W.: The Application of Petri Nets to Workflow Management, The Journal of Circuits, Systems and Computers, 8, 1998, 21-66.
- [2] van der Aalst, W., Weijters, T., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs, IEEE Trans. Knowl. Data Eng., 16, 2004, 1128-1142.
- [3] Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow Logs, Proceedings of the 6th International Conference on Extending Database Technology (EDBT), 1998.
- [4] Barletta, M., Ranise, S., Vigano, L.: A declarative two-level framework to specify and verify workflow and authorization policies in service-oriented architectures, Service Oriented Computing and Applications, 5, June 2001, 105-137.
- [5] Bellodi, E., Riguzzi, F., Lamma, E.: Probabilistic declarative process mining, Proceedings of the 4th international conference on Knowledge science, engineering and management, KSEM’10, Springer-Verlag, 2010.
- [6] Bocionek, S., Mitchell, T.: Office Automation Systems that are programmed by their Users, Proceedings of the 23rd Annual Conference of the German Association for Computer Science (Gesellschaft fur Informatik, GI), 1993.
- [7] Bombini, G., Mauro, N. D., Esposito, F., Ferilli, S.: Incremental Learning from Positive Examples, Atti del 24-esimo Convegno Italiano di Logica Computazionale 2009 (CILC-2009), 2009.
- [8] Cattafi, M., Lamma, E., Riguzzi, F., Storari, S.: Incremental Declarative Process Mining, in: Smart Information and Knowledge Management (E. Szczerbicki, N. Nguyen, Eds.), vol. 260 of Studies in Computational Intelligence, 2010, 103-127.
- [9] Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases, Springer-Verlag, 1990.
- [10] Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Transactions on Petri Nets and Other Models of Concurrency II, chapter Exploiting Inductive Logic Programming Techniques for Declarative Process Mining, Springer-Verlag, 2009, 278-295.
- [11] Cook, J., Wolf, A.: Discovering Models of Software Processes from Event-Based Data, Technical Report CU-CS-819-96, Department of Computer Science, University of Colorado, 1996.
- [12] Cook, J., Wolf, A.: Event-Based Detection of Concurrency, Technical Report CU-CS-860-98, Department of Computer Science, University of Colorado, 1998.
- [13] Desel, J., Erwin, T.: Hybrid specifications: looking at workflows from a run-time perspective, Computer Systems Science and Engineering, 15(5), 2000, 291-302.
- [14] Ellis, C., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems, Proceedings of the Conference on Organizational Computing Systems, ACM, 1995.
- [15] Esposito, F., Fanizzi, N., Ferilli, S., Basile, T., Mauro, N. D.: Multistrategy Operators for Relational Learning and Their Cooperation, Fundamenta Informaticae Journal, 69(4), 2006, 389-409.
- [16] Esposito, F., Semeraro, G., Fanizzi, N., Ferilli, S.: Multistrategy Theory Revision: Induction and Abduction in INTHELEX, Machine Learning Journal, 38(1/2), 2000, 133-156.
- [17] Ferilli, S., Basile, T., Biba, M., Mauro, N. D., Esposito, F.: A General Similarity Framework for Horn Clause Logic, Fundamenta Informaticae Journal, 90(1-2), 2009, 43-66.
- [18] Herbst, J.: Inducing Workflow Models from Workflow Instances, Proceedings of the 6th European Concurrent Engineering Conference, Society for Computer Simulation (SCS), 1999.
- [19] Herbst, J.: Dealing with Concurrency in Workflow Induction, Proceedings of the European Concurrent Engineering Conference, SCS Europe, 2000.
- [20] Herbst, J.: A Machine Learning Approach to Workflow Management, in: Machine Learning: ECML 2000 (R. Lopez de Mantaras, E. Plaza, Eds.), vol. 1810 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2000, 183-194.
- [21] Herbst, J., Karagiannis, D.: Integrating Machine Learning and Workflow Management to Support Acquisition and Adaptation of Workflow Models, Proceedings of the 9th International Workshop on Database and Expert Systems Applications, IEEE, 1998.
- [22] Herbst, J., Karagiannis, D.: An Inductive Approach to the Acquisition and Adaptation of Workflow Models, Proceedings of the IJCAI’99 Workshop on Intelligent Workflow and Process Management: The New Frontier for AI in Business, 1999.
- [23] Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic programming to process mining, Proceedings of the 17th international conference on Inductive logic programming, ILP’07, Berlin, Heidelberg, 2008.
- [24] Lloyd, J. W.: Foundations of Logic Programming, 2 edition, Springer-Verlag, 1987.
- [25] de Medeiros, A., van der Aalst, W., Weijters, A.: Workflow Mining: Current Status and Future Directions, On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE, volume 2888 of Lecture Notes in Computer Science, 2888, Springer-Verlag, 2003.
- [26] de Medeiros, A., van Dongen, B., van der Aalst, W., Weijters, A.: Process Mining: Extending the a-algorithm to Mine Short Loops, WP 113, BETA Working Paper Series, Eindhoven University of Technology, 2004.
- [27] de Medeiros, A., Weijters, A., van der Aalst, W.: Genetic process mining: an experimental evaluation, Data Min. Knowl. Discov., 14, 2007, 245-304.
- [28] Muggleton, S.: Inductive Logic Programming, New Generation Computing, 8(4), 1991, 295-318.
- [29] Pesic, M., van der Aalst, W. M. P.: A declarative approach for flexible business processes management, Proceedings of the 2006 international conference on Business Process Management Workshops, BPM’06, Springer-Verlag, 2006.
- [30] Rouveirol, C.: Extensions of Inversion of Resolution Applied to Theory Completion, in: Inductive Logic Programming, Academic Press, 1992, 64-90.
- [31] Rozinat, A., van der Aalst, W.: Decision Mining in Business Processes, WP 164, BETA Working Paper Series, Eindhoven University of Technology, 2006.
- [32] Weijters, A., van der Aalst, W.: Rediscovering Workflow Models from Event-Based Data, Proceedings of the 11th Dutch-Belgian Conference of Machine Learning (Benelearn 2001) (V. Hoste, G. D. Pauw, Eds.), 2001.
- [33] Wen, L., Wang, J., Sun, J.: Detecting Implicit Dependencies Between Tasks from Event Logs, in: APWeb, vol. 3841 of Lecture Notes in Computer Science, Springer, 2006, 591-603.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a250c18e-5ef3-4a55-9253-3c50d1be6859