PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative Analysis of Stochastic and Uncertain Process Degradation Modeling Based on RQRL

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Small sample sizes cause epistemic uncertainties in reliability estimation and even result in potential risks in maintenance strategies. To explore the difference between stochastic- and uncertain-process-based degradation modeling in reliability estimation for small samples, this study proposes a comparative analysis methodology based on the range of quantile reliable lifetime (RQRL). First, considering both unit-to-unit variability and epistemic uncertainty, we proposed the Wiener and Liu process degradation models. Second, based on the RQRL, a comparative analysis method of different degradation models for reliability estimation under various sample sizes and measurement times was proposed. Third, based on a case study, the sensitivities of the Wiener and Liu process degradation models for various sample sizes and measurement times were compared and analyzed based on the RQRL. The results demonstrated that using the uncertain process degradation model improved the uniformity and stability of reliability estimation under small-sample conditions.
Rocznik
Strony
art. no. 186823
Opis fizyczny
Bibliogr. 43 poz., tab., wykr.
Twórcy
autor
  • Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, China
autor
  • Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, China
  • University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
autor
  • Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, China
Bibliografia
  • 1. Hu C, Xing Y, Du D, Si X, Zhang J. Remaining useful life estimation for two-phase nonlinear degradation processes. Reliability Engineering & System Safety 2023; 230: 108945. http://doi.org/10.1016/j.ress.2022.108945
  • 2. Zhang Z, Si X, Hu C, Lei Y. Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods. European Journal of Operational Research 2018; 271(3): 775-796. http://doi.org/10.1016/j.ejor.2018.02.033
  • 3. Yan W, Xu X, Bigaud D, Cao W. Optimal design of step-stress accelerated degradation tests based on the Tweedie exponential dispersion process. Reliability Engineering & System Safety 2023; 230: 108917. http://doi.org/10.1016/j.ress.2022.108917
  • 4. Shangguan A, Feng N, Fei R. Reliability modeling based on multiple wiener degradation-shock competing failure process and dynamic failure threshold. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2023; 25(4). http://doi.org/10.17531/ein/174248
  • 5. Zhang J X, Du D B, Si X S, Liu Y, Hu C H. Prognostics based on stochastic degradation process: The last exit time perspective. IEEE Transactions on Reliability 2021; 70(3): 1158-1176. http://doi.org/10.1109/tr.2021.3075213
  • 6. Yan B, Ma X, Huang G, Zhao Y. Two-stage physics-based Wiener process models for online RUL prediction in field vibration data. Mechanical Systems and Signal Processing 2021; 152: 107378. http://doi.org/10.1016/j.ymssp.2020.107378
  • 7. Zhu Y, Liu S, Wei K, Zuo H, Du R, Shu X. A novel based-performance degradation Wiener process model for real-time reliability evaluation of lithium-ion battery. Journal of Energy Storage 2022; 50: 104313. http://doi.org/10.1016/j.est.2022.104313
  • 8. Yousefi N, Coit D W, Song S. Reliability analysis of systems considering clusters of dependent degrading components. Reliability Engineering & System Safety 2020; 202: 107005. http://doi.org/10.1016/j.ress.2020.107005
  • 9. Li Z, Hu Q, Yang Q, Yu D. Statistical analysis and optimal inspection planning for lifetime delayed gamma degradation processes. Quality and Reliability Engineering International 2022; 38(6): 2986-3001. http://doi.org/10.1002/qre.2969
  • 10. Sun B, Li Y, Wang Z, Ren Y, Feng Q, Yang D. An improved inverse Gaussian process with random effects and measurement errors for RUL prediction of hydraulic piston pump. Measurement 2021; 173: 108604. http://doi.org/10.1016/j.measurement.2020.108604
  • 11. Chen X, Yang Q, Wu X. Nonlinear degradation model and reliability analysis by integrating image covariate. Reliability Engineering & System Safety 2022; 225: 108602. http://doi.org/10.1016/j.ress.2022.108602
  • 12. Si X, Li T, Zhang Q, Hu C. Prognostics for linear stochastic degrading systems with survival measurements. IEEE Transactions on Industrial Electronics 2020; 67(4): 3202-3215. http://doi.org/10.1109/tie.2019.2908617
  • 13. Wang C, Liu J, Yang Q, Hu Q, Yu D. Recoverability effects on reliability assessment for accelerated degradation testing. IISE Transactions 2023; 55(7): 698-710. http://doi.org/10.1080/24725854.2022.2089784
  • 14. Chen Z, Xia T, Li Y, Pan E. A hybrid prognostic method based on gated recurrent unit network and an adaptive Wiener process model considering measurement errors. Mechanical Systems and Signal Processing 2021; 158: 107785. http://doi.org/10.1016/j.ymssp.2021.107785
  • 15. Cai B, Fan H, Shao X, Liu Y, Liu G, Liu Z, Ji R. Remaining useful life re-prediction methodology based on Wiener process: Subsea Christmas tree system as a case study. Computers & Industrial Engineering 2021; 151: 106983. http://doi.org/10.1016/j.cie.2020.106983
  • 16. Sun F, Li H, Chen Y, Liao H. Reliability analysis for a system experiencing dependent degradation processes and random shocks based on a nonlinear Wiener process model. Reliability Engineering & System Safety 2021; 215: 107906. http://doi.org/10.1016/j.ress.2021.107906
  • 17. Zheng B, Chen C, Lin Y, Ye X, Zhai G. Reliability analysis based on a bivariate degradation model considering random initial state and its correlation with degradation rate. IEEE Transactions on Reliability 2023; 72(1): 37-48. http://doi.org/10.1109/tr.2022.3172416
  • 18. Kang R, Zhang Q, Zeng Z, Zio E, Li X. Measuring reliability under epistemic uncertainty: Review on non-probabilistic reliability metrics. Chinese Journal of Aeronautics 2016; 29(3): 571-579. http://doi.org/10.1016/j.cja.2016.04.004
  • 19. Liu B. Uncertainty Theory. 2nd ed. Berlin, Springer-Verlag: 2007.
  • 20. Liu B. Some research problems in uncertainty theory. Journal of Uncertain Systems 2009; 3(1): 3-10. http://doi.org/10.21236/ada176439
  • 21. Kang R. Belief Reliability Theory and Methodology. Beijing, National Defense Industry Press: 2021. https://doi.org/10.1007/978-981-16-0823-0
  • 22. Zhang Q, Kang R, Wen M. Belief reliability for uncertain random systems. IEEE Transactions on Fuzzy Systems 2018; 26(6): 3605-3614. http://doi.org/10.1109/tfuzz.2018.2838560
  • 23. Zeng Z, Kang R, Wen M, Zio E. Uncertainty theory as a basis for belief reliability. Information Sciences 2018; 429: 26-36. http://doi.org/10.1016/j.ins.2017.10.050
  • 24. Chen Y, Wen M, Zhang Q, Kang R. Belief reliability-based design optimization method with quantile index under epistemic uncertainty. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2023; 25(2). http://doi.org/10.17531/ein/163545
  • 25. Liu Z, Yang S, Yang M, Kang R. Software belief reliability growth model based on uncertain differential equation. IEEE Transactions on Reliability 2022; 71(2): 775-787. http://doi.org/10.1109/tr.2022.3154770
  • 26. Li X Y, Wu J P, Liu L, Wen M L, Kang R. Modeling accelerated degradation data based on the uncertain process. IEEE Transactions on Fuzzy Systems 2019; 27(8): 1532-1542. http://doi.org/10.1109/tfuzz.2018.2883016
  • 27. Li X Y, Chen D Y, Wu J P, Kang R. 3-Dimensional general ADT modeling and analysis: Considering epistemic uncertainties in unit, time and stress dimension. Reliability Engineering & System Safety 2022; 225: 108577. http://doi.org/10.1016/j.ress.2022.108577
  • 28. Wu J P, Kang R, Li X Y. Uncertain accelerated degradation modeling and analysis considering epistemic uncertainties in time and unit dimension. Reliability Engineering & System Safety 2020; 201: 106967. http://doi.org/10.1016/j.ress.2020.106967
  • 29. Chen W B, Li X Y, Kang R. Integration for degradation analysis with multi-source ADT datasets considering dataset discrepancies and epistemic uncertainties. Reliability Engineering & System Safety 2022; 222: 108430. http://doi.org/10.1016/j.ress.2022.108430
  • 30. Li Y, Jiang K, Zeng T, Chen W, Li X, Li D, Zhang Z. Belief reliability modeling and analysis for planetary reducer considering multi-source uncertainties and wear. Journal of Systems Engineering and Electronics 2021; 32(5): 1246-1262. http://doi.org/10.23919/jsee.2021.000106
  • 31. Li Y, Chen Y, Zhang Q, Kang R. Belief reliability analysis of multi-state deteriorating systems under epistemic uncertainty. Information Sciences 2022; 604: 249-266. http://doi.org/10.1016/j.ins.2022.05.022
  • 32. Wang Y, Kang R, Chen Y. Belief reliability modeling for the two-phase degradation system with a change point under small sample conditions. Computers & Industrial Engineering 2022; 173: 108697. http://doi.org/10.1016/j.cie.2022.108697
  • 33. Chen Y, Wang Y, Li S, Kang R. Hybrid uncertainty quantification of dependent competing failure process with chance theory. Reliability Engineering & System Safety 2023; 230: 108958. http://doi.org/10.1016/j.ress.2022.108958
  • 34. Sun B, Wu Z, Feng Q, Wang Z, Ren Y, Yang D, Xia Q. Small sample reliability assessment with online time-series data based on a worm Wasserstein generative adversarial network learning method. IEEE Transactions on Industrial Informatics 2023; 19(2): 1207-1216. https://doi.org/10.1109/tii.2022.3168667
  • 35. Si X S, Wang W, Hu C H, Zhou D H. Estimating remaining useful life with three-source variability in degradation modeling. IEEE Transactions on Reliability 2014; 63(1): 167-190. http://doi.org/10.1109/tr.2014.2299151
  • 36. Wang X, Balakrishnan N, Guo B. Residual life estimation based on a generalized Wiener degradation process. Reliability Engineering & System Safety 2014; 124: 13-23. http://doi.org/10.1016/j.ress.2013.11.011
  • 37. Chen Y, Li S, Kang R. Epistemic uncertainty quantification via uncertainty theory in the reliability evaluation of a system with failure trigger effect. Reliability Engineering & System Safety 2021; 215: 107896. http://doi.org/10.1016/j.ress.2021.107896
  • 38. Liu B. Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty. Berlin, Springer-Verlag: 2010.
  • 39. Liu B. Extreme value theorems of uncertain process with application to insurance risk model. Soft Computing 2013; 17(4): 549-556. http://doi.org/10.1007/s00500-012-0930-5
  • 40. Liu B. Uncertainty distribution and independence of uncertain processes. Fuzzy Optimization and Decision Making 2014; 13(3): 259-271. http://doi.org/10.1007/s10700-014-9181-5
  • 41. Liu B. Uncertainty Theory. 5th ed. Beijing, Uncertainty Theory Laboratory: 2022.
  • 42. Li X Y, Chen W B, Li F R, Kang R. Reliability evaluation with limited and censored time-to-failure data based on uncertainty distributions. Applied Mathematical Modelling 2021; 94: 403-420. http://doi.org/10.1016/j.apm.2021.01.029
  • 43. Meeker W Q, Escobar L A. Statistical Methods for Reliability Data. New York, John Wiley & Sons, Inc: 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a24e23f6-7514-4414-9b77-04c893d5bce5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.