PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Production of actinium-225 from a (n,p) reaction: Feasibility and pre-design studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Actinium-225 is used in nuclear medicine for the treatment of malignant tumours. It can be applied to produce Bi-213 in a reusable generator or can be used alone as an agent for radiation therapy, in particular for targeted alpha therapy. However, the availability of Ac-225 for worldwide use, particularly in low- and middle-income countries, is limited. We present a feasibility study employing GATE, an open-source Monte Carlo simulation toolkit, on the production of Ac-225 from a neutron generator. This work suggests that a design consisting of three concentric cylinders, the innermost a Cf-252 neutron source, the middle nickel cylinder acting as a proton-producing target and the outer cylinder a RaCl2 target may provide a feasible design outline for an Ac-225 generator.
Czasopismo
Rocznik
Strony
61--67
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • King Abdulaziz University Faculty of Engineering Department of Nuclear Engineering P. O. Box 80204, Jeddah 21589, Saudi Arabia
  • King Abdulaziz University Faculty of Engineering Department of Nuclear Engineering P. O. Box 80204, Jeddah 21589, Saudi Arabia
  • King Abdulaziz University Faculty of Engineering Department of Nuclear Engineering P. O. Box 80204, Jeddah 21589, Saudi Arabia
  • King Abdulaziz University Center for Training & Radiation Prevention P. O. Box 80204, Jeddah 21589, Saudi Arabia
  • King Abdulaziz University Faculty of Engineering Department of Nuclear Engineering P. O. Box 80204, Jeddah 21589, Saudi Arabia
  • King Abdulaziz University Center for Training & Radiation Prevention P. O. Box 80204, Jeddah 21589, Saudi Arabia
  • King Abdulaziz University Faculty of Engineering Department of Nuclear Engineering P. O. Box 80204, Jeddah 21589, Saudi Arabia
  • University College London Department of Medical Physics & Biomedical Engineering Malet Place Engineering Building London WC1E 6BT, UK
Bibliografia
  • 1. Villers, A., & Grosclaude, P. (2008). Épidémiologie du cancer de la prostate. Med. Nucl., 32(1), 2–4. OI:10.1016/j.mednuc.2007.11.003.
  • 2. Global Cancer Observatory. (2019). Prostate 2018. vailable from https://gco.iarc.fr/today/data/factsheets/cancers/27-Prostate-fact-sheet.pdf.
  • 3. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 68(6), 394–424. DOI:10.3322/ caac.21492.
  • 4. Davison, B. J., Gleave, M. E., Goldenberg, S. L., Degner, L. F., Hoffart, D., & Berkowitz, J. (2002). Assessing information and decision preferences of men with prostate cancer and their partners. Cancer Nurs., 25(1), 42–49.
  • 5. Hofman, M. S., Violet, J., Hicks, R. J., Ferdinandus, J., Thang, S. P., Akhurst, T., Iravani, A., Kong, G., Kumar, A. R., Murphy, D. G., Eu, P., Jackson, P., Scalzo, M., Williams, S. G., & Sandhu, S. (2018). [177 Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol., 19(6), 825–833. DOI:10.1016/S1470-2045(18)30198-0.
  • 6. Li, Y., Tian, Z., Rizvi, S., Bander, N., Allen, B., & Wales, S. (2002). In vitro and preclinical targeted alpha therapy of human prostate cancer with Bi-213 labeled J591 antibody against the prostate specifi c membrane antigen. Prostate Cancer Prostatic Dis.,5, 36–46. DOI:10.1038/sj/pcan/4500543.
  • 7. Azorín-Vega, E., Rojas-Calderón, E., Ferro-Flores, G., Aranda-Lara, L., Jiménez-Mancilla, N., & NavaCabrera, M. A. (2019). Assessment of the radiation absorbed dose produced by 177 Lu-iPSMA, 225 AciPSMA and 223 RaCl2 to prostate cancer cell nuclei in a bone microenvironment model. Appl. Radiat. Isot., 146, 66–71. DOI:10.1016/j.apradiso.2019.01.020.
  • 8. Ahn, J., Park, S., Zuniga, B., Bera, A., Song, C. S., & Chatterjee, B. (2016). Vitamin D in prostate cancer. In Vitamins and hormones (Vol. 100, pp. 321–355). New York: Academic Press Inc.
  • 9. Ludwig, D. L., Bryan, R. A., Dawicki, W., Geoghegan, E. M., Liang, Q., Gokhale, M., Reddy, V., Garg, R., Allen, K. J. H., Berger, M. S., & Dadachova, E. (2020). Preclinical development of an actinium-225-labeled antibody radio-conjugate directed against CD45 for targeted conditioning and radioimmunotherapy. Biol. Blood Marrow Transplant., 26(3), S160–S161.OI:10.1016/j.bbmt.2019.12.714.
  • 10. Miederer, M., Scheinberg, D. A., & McDevitt, M. R. (2008). Realizing the potential of the actinium-225 radionuclide generator in targeted alpha particle therapy applications. Adv. Drug Deliv. Rev., 60(12), 1371–1382.
  • 11. Dekempeneer, Y., Keyaerts, M., Krasniqi, A., Puttemans, J., Muyldermans, S., Lahoutte, T., D’huyvetter, M., & Devoogdt, N. (2016). Targeted alpha therapyusing short-lived alpha-particles and the promise ofnanobodies as targeting vehicle. Expert Opin. Biol.Ther., 16(8), 1035–1047. DOI:10.1080/14712598.2 16.1185412.
  • 12. Morgenstern, A., Apostolidis, C., & Bruchertseifer,F. (2020). Supply and clinical application of actinium-225 and bismuth-213. Semin. Nucl. Med., 50(2), 119–123. DOI:10.1053/j.semnuclmed.2020.02.003.
  • 13. Artun, O. (2017). Estimation of the production of medical Ac-225 on thorium material via proton accelerator. Appl. Radiat. Isot., 127, 166–172. DOI:10.1016/j.apradiso.2017.06.006.
  • 14. Kossert, K., Takács, M. P., & Nähle, O. (2020). Determination of the activity of 225Ac and of the half-lives of 213Po and 225Ac. Appl. Radiat. Isot., 156, 109020. DOI:10.1016/j.apradiso.2019.109020.
  • 15. Bruchertseifer, F., Kellerbauer, A., Malmbeck, R., & Morgenstern, A. (2019). Targeted alpha therapy with bismuth-213 and actinium-225: Meeting future demand. J. Label. Compd. Radiopharm., 62(11), 794–802. DOI:10.1002/jlcr.3792.
  • 16. Allen, B. J. (2017). A comparative evaluation of Ac225 vs Bi213 as therapeutic radioisotopes for targeted alpha therapy for cancer. Australas. Phys. Eng. Sci. Med., 40(2), 369–376. DOI:10.1007/s13246-017-0534-6.
  • 17. Ruddy, F. H., Dulloo, A. R., Seidel, J. G., & Petrović, B. (2004). Separation of the alpha-emitting radioisotopes actinium-225 and bismuth-213 from thorium-229 using alpha recoil methods. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms, 213, 351–356. DOI:10.1016/S0168-583X(03)01580-5.
  • 18. Artun, O. (2017). Estimation of the production of medical Ac-225 on thorium material via proton accelerator. Appl. Radiat. Isot., 127, 166–172. DOI:10.1016/j.apradiso.2017.06.006.
  • 19. Apostolidis, C., Molinet, R., McGinley, J., Abbas, K., Möllenbeck, J., & Morgenstern, A. (2005). Cyclotron production of Ac-225 for targeted alpha therapy. Appl. Radiat. Isot., 62(3), 383–387. DOI:10.1016/j.apradiso.2004.06.013.
  • 20. Jan, S., Santin, G., Strul, D., Staelens, S., Assie, K., Autret, D., Avner, S., Barbier, R., Bardies, M., Bloomfi eld, P. M., Brasse, D., Breton, V., Bruyndonckx, P., Buvat, I., Chatziioannou, A. F., Choi, Y., Chung, Y. H., Comtat, C., Donnarieix, D., Ferrer, L., Glick, S. ., Groiselle, C. J., Guez, D., Honore, P. F., KerhoasCavata, S., Kirov, A. S., Kohli, V., Koole, M., Krieguer, M., van der Laan, D. J., Lamare, F., Largeron, G., Lartizien, C., Lazaro, D., Maas, M. C., Maigne, L., Mayet, L., Melot, F., Merheb, C., Pennacchio, E., Perez, J., Pietrzyk, U., Rannou, F. R., Rey, M., Schaart, D. R.,Schmidtlein, C. R., Simon, L., Song, T. Y., Vieira, J. M., Visvikis, D., Van der Walle, R., Wieers, E., & Morel, C. (2004). GATE: a simulation toolkit for PET and SPECT. Phys. Med. Biol., 49(19), 4543–4561.DOI:10.1088/0031-9155/49/19/007.
  • 21. Grevillot, L., Bertrand, D., Dessy, F., Freud, N., & Sarrut, D. (2011). A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4. Phys. Med. Biol., 56(16), 5203–5219. DOI:10.1088/0031-9155/56/16/008.
  • 22. Grevillot, L., Boersma, D. J., Fuchs, H., Aitkenhead, A., Elia, A., Bolsa, M., Winterhalter, C., Vidal, M., Jan, S., Pietrzyk, U., Maigne, L., & Sarrut, D. (2020).Technical Note: GATE-RTion: a GATE/Geant4 release for clinical applications in scanned ion beam therapy. Med. Phys., 47(8), 3675–3681. DOI:10.1002/mp.14242.
  • 23. Aitelcadi, Z., Toufi que, Y., El Kharrim, A., Elmadani, S., Hilali, A., & Bouhali, O. (2018). Validation of the GATE Monte Carlo code for radiation therapy: Varian Clinac2300C/D. In Proceedings of the 2018 International Conference on Optimization and Applications, ICOA 2018, 31 May 2018, pp. 1–4. Institute of Electrical and Electronics Engineers Inc. DOI:10.1109/ICOA.2018.8370602.
  • 24. Aguiar, P., Casarejos, E., Silva-Rodriguez, J., Vilan, J. A., & Iglesias, A. (2015). Geant4-GATE simulation of a large plastic scintillator for muon radiography. IEEE Trans. Nucl. Sci., 62(3), 1233–1238. DOI:10.1109/TNS.2015.2431297.
  • 25. Lamare, F., Turzo, A., Bizais, Y., Le Rest, C. C., & Visvikis, D. (2006). Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE. Phys. Med. Biol., 51(4), 943–962.DOI:10.1088/0031-9155/51/4/013.
  • 26. Papadimitroulas, P. (2017). Dosimetry applications in GATE Monte Carlo toolkit. Phys. Medica, 41, 136–140. DOI:10.1016/j.ejmp.2017.02.005.
  • 27. Thiam, C. O., Breton, V., Donnarieix, D., Habib, B., & Maigne, L. (2008). Validation of a dose deposited by low-energy photons using GATE/GEANT4. Phys. Med. Biol., 53(11), 3039–3055. DOI:10.1088/0031-9155/53/11/019.
  • 28. Villoing, D., Marcatili, S., Garcia, M. -P., & Bardiès, M. (2017). Internal dosimetry with the Monte Carlo code GATE: validation using the ICRP/CRU female reference computational model. Phys. Med. Biol., 62(5), 1885–1904. DOI:10.1088/1361-6560/62/5/1885.
  • 29. Geant4 Collaboration. (2018). Physics reference manual. CERN.
  • 30. Maslov, O. D., Sabel’nikov, A. V., & Dmitriev, S. N. (2006). Preparation of 225Ac by 226Ra(,n) photonuclear reaction on an electron accelerator, MT-25 microtron. Radiochemistry, 48(2), 195–197. DOI:10.1134/S1066362206020184.
  • 31. Balasundar, S., Chandrasekaran, S., Subramanian, V., & Venkatraman, B. (2021). Investigations onneutron attenuation properties of poly-boron materials using Am-Be and 252Cf sources neutron spectra.nn. Nucl. Energy, 153, 108083. DOI:10.1016/j.anucene.2020.108083.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a24d1ac3-dbdb-49a9-94a8-f84c65e0f5fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.