Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Fused deposition modeling (FDM) technology is one of the rapidly growing techniques used for producing various complicated configurations without the need for any tools or continuous human intervention. However, a low quality of surfaces results for the layered production used in FDM. It is essential to investigate a suitable method for enhancing the accuracy and quality associated with FDM parts. This study aims to investigate the impact of different parameters such as the percentage of infill density, the shell thickness, layer thickness, and the number of top/bottom layers, as well as the percentage of infill overlap on part quality and the improvement of surface finish for printed specimens achieved through post-processing. Polylactic acid (PLA) material is used in building test specimens through the FDM approach. The experiments are carried out based on the Taguchi design of experiment method using (L25) orthogonal array. Using an analysis-of-variance approach (ANOVA), it is possible to understand the significance of the FDM parameters in order to find optimal parameter combinations. The results indicate that the application of the vapour smoothing procedure (VSP) treatment enhances the surface quality of FDM components to a microstage with minimal dimensional variation. The dichloromethane chemical has been found to exhibit excellent surface finish at an infill density of 50%, a layer thickness of 0.1 mm, a shell thickness of 2.8 mm, five top/bottom layer numbers, and 0.25 infill overlap.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
47--60
Opis fizyczny
Bibliogr. 32 poz., fig., tab.
Twórcy
autor
- Production Engineering and Metallurgy Department, University of Technology-Iraq, Baghdad, Iraq
autor
- Production Engineering and Metallurgy Department, University of Technology-Iraq, Baghdad, Iraq
autor
- Production Engineering and Metallurgy Department, University of Technology-Iraq, Baghdad, Iraq
Bibliografia
- 1. Fafenrot S., Grimmelsmann N., Wortmann M., Ehrmann A. Three-dimensional (3D) printing of polymer-metal hybrid materials by fused deposition modeling. Materials 2017; 10(10): 1199. https://doi.org/10.3390/ma10101199.
- 2. Ahmad S.M., Ezdeen S.Y. Effect of coating on the specific properties and damping loss parameter of ultem 1010. ZANCO Journal of Pure and Applied Sciences 2021; 33(2): 105–116. http://dx.doi.org/10.21271/zjpas.
- 3. Abbas T., Othman F.M., Ali H.B. Effect of infill parameter on compression property in FDM process. International Journal of Engineering Research and Application 2017; 7(10): 16–19. https://doi.org/10.9790/9622-0710021619.
- 4. Gibson I., Rosen D., Stucker B., Khorasani A. Additive manufacturing technologies – 3D printing, rapid prototyping, and direct digital manufacturing. Springer, Business Media, New York, NY, 2015. https://doi.org/10.1007/978-1-4939-2113-3.
- 5. Vyavahare S., Teraiya S., Panghal D., Kumar S. Fused deposition modelling: a review. Rapid Prototyping Journal 2020; 26(1): 176–201. https://doi.org/10.1108/rpj-04-2019-0106.
- 6. Naser F.A., Rashid M.T. The Influence of Concave Pectoral Fin Morphology in the Performance of Labriform Swimming Robot. Iraqi Journal for Electrical and Electronic Engineering 2020; 16(1): 54–61. https://doi.org/ 10.37917/ijeee.16.1.7.
- 7. Aldeen N.A., Sadkhan B.A., Owaid B. Hand bone orthosis manufacturing using 3d printing technology. Journal of Engineering and Sustainable Development 2020; 24(Special): 451–458. https://doi.org/10.31272/jeasd.conf.1.50.
- 8. Kruth J.P., Levy G., Klocke F., Child T.H.C. Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Annals – Manufacturing Technology 2007; 56(2): 730–759. https://doi.org/ 10.1016/j.cirp.2007.10.004.
- 9. Gebhardt A. Understanding additive manufacturing. Carl Hanser Verlag, Munich, 2012.
- 10. Sood A.K., Ohdar R.K., Mahapatra S.S. Improving dimensional accuracy of fused deposition modeling processed part using grey Taguchi method. Materials & Design 2009; 30(10): 4243–4252. https://doi.org/10.1016/j.matdes.2009.04.030.
- 11. Budzik G., Dziubek T., Przeszłowski Ł.P., Sobolewski B., Dębski M., Gontarz M.E. Study of uni-directional torsion of samples with different internal structures manufactured in the MEX process. Rapid Prototyping Journal 2023; 29(8): 1604–1619. https://doi.org/10.1108/RPJ-09-2022-0332.
- 12. Chohan J.S., Mittal N., Singh R., Singh U., Salgotra R., Kumar R., Singh S. Predictive modeling of surface and dimensional features of vapour-smoothened FDM parts using self-adaptive cuckoo search algorithm. Progress in Additive Manufacturing 2022; 7: 1023–1036. https://doi.org/10.1007/s40964-022-00277-8.
- 13. Kishore S.R., Mathew A., Tomy A.T., Sugavaneswaran M., Rajan A.J. Design and development of hot vapour polishing system and optimization of it’s process parameters for FDM printed parts. Tribology in Industry 2022; 44(4): 551–567. https://doi.org/10.24874/ti.1305.05.22.09.
- 14. Lavecchia F., Guerra M.G., Galantucci L.M. Chemical vapor treatment to improve surface finish of 3D printed polylactic acid (PLA) parts realized by fused filament fabrication. Progress in Additive Manufacturing 2022; 7: 65–75. https://doi.org/10.1007/s40964-021-00213-2.
- 15. Budzik G., Woźniak J., Paszkiewicz A., Przeszłowski Ł., Dziubek T., Dębski M. Methodology for the Quality Control Process of Additive Manufacturing Products Made of Polymer Materials. Materials 2021; 14(9): 2202. https://doi.org/10.3390/ma14092202.
- 16. Khosravani M.R., Schüürmann J., Berto F., Reinicke T. On the post-processing of 3D-printed ABS parts. Polymers 2021; 13(10): 1559. https://doi.org/10.3390/polym13101559.
- 17. Sugavaneswarn M., Prashanthi B.A., John J.R. A multi-criteria decision making method for vapor smoothening fused deposition modelling part. Rapid Prototyping Journal 2021; 28(2): 236–252. https://doi.org/10.1108/rpj-08-2020-0184.
- 18. Dębski M., Magniszewski M., Bernaczek J., Przeszłowski Ł., Gontarz M., Kiełbicki M. Influence of Torsion on the Structure of Machine Elements Made of Polymeric Materials by 3D Printing. Polimery 2021; 66(5): 298–04. https://doi.org/10.14314/polimery.2021.5.3.
- 19. Li B., Yang J., Gu H., Jiang J., Zhang J., Sun J. Surface roughness of PLA parts by FDM with chemical treatment. Journal of Physics: Conference Series 2021; 1948: 012199. https://doi.org/10.1088/1742-6596/1948/1/012199.
- 20. Prajapati M., Rimza S. An experimental study of surface improvement in FDM parts by vapor treatment process. Journal of Mechanical Engineering Research 2020; 3(1): 12–20. https://doi.org/10.30564/jmer.v3i1.1681.
- 21. Panda S.S., Chabra R., Kapil S., Patel V. Chemical vapour treatment for enhancing the surface finish of PLA object produced by fused deposition method using the Taguchi optimization method. SN Applied Sciences 2020; 2(916). https://doi.org/10.1007/s42452-020-2740-1.
- 22. Chohan J.S., Kumar R., Singh T.B., Singh S., Sharma S., Singh J., Mia M., Pimenov D. Y., Chattopadhyaya S., Dwivedi S.P., Kapłonek W. Taguchi S/N and TOPSIS based optimization of fused deposition modelling and vapor finishing process for manufacturing of ABS plastic parts. Materials. 2020; 13(22): 5176. https://doi.org/10.3390/ma13225176.
- 23. Singh T.H.B., Chohan J.S., Kumar R. Performance analysis of vapour finishing apparatus for surface enhancement of FDM parts. Materials Today proceedings 2020; 26(5): 3497–3502. https://doi.org/10.1016/j.matpr.2020.04.553.
- 24. Buys Y.F., Aznan A.N.A., Anuar H. Mechanical properties, morphology, and hydrolytic degradation behavior of polylactic acid/natural rubber blends. IOP Conference Series: Materials Science and Engineering 2018; 290(1): 12077. https://doi.org/10.1088/1757-899X/290/1/012077.
- 25. Rismalia M., Hidajat S.C., Permana I.G.R., Hadisujoto B., Muslimin M., Triawan F. Infill pattern and density effects on the tensile properties of 3D printed PLA material. Journal of Physics: Conference Series 2019; 1402(4): 44041. https://doi.org/10.1088/1742-6596/1402/4/044041.
- 26. Abdulridha H.H., Abbas T.F. Analysis and investigation the effect of the printing parameters on the mechanical and physical properties of PLA parts fabricated via FDM printing. Advances in Science and Technology Research Journal 2023; 17(6): 49–62. https://doi.org/10.12913/22998624/173562.
- 27. Dey A., Yodo N. A systematic survey of FDM process parameter optimization and their influence on part characteristics. Journal of Manufacturing and Materials Processing 2019; 3(3): 64. https://doi.org/10.3390/jmmp3030064.
- 28. Maguluri N., Suresh G., Rao K.V. Assessing the effect of FDM processing parameters on mechanical properties of PLA parts using Taguchi method, Journal of Thermoplastic Composite Materials 2021; 36(10): 1–17. https://doi.org/10.1177/08927057211053036.
- 29. Noor H., Ibrahim M., Wahab M.S., Zahid M.S. Evaluation of FDM pattern with ABS and PLA material. Applied Mechanics and Materials 2014; 465–466: 55–59. https://doi.org/10.4028/www.scientific.net/AMM.465-466.55.
- 30. Mohamed O.A., Masood S.H., Bhowmik J.L. Optimization of fused deposition modelling process parameters: a review of current research and future prospects. Advances in Manufacturing 2015; 3(1): 42–52. https://doi.org/10.1007/s40436-014-0097-7.
- 31. Hambali R.H., Cheong K.M., Azizan N. Analysis of the influence of chemical treatment to the strength and surface roughness of FDM. IOP Conference Series Materials Science Engineering 2017; 210: 1–9. https://doi.org/10.1088/1757-899X/210/1/012063.
- 32. Lalehpour A., Barari A. Post processing for fused deposition modeling parts with acetone vapour bath. IFAC-PapersOnLine 2016; 49(31): 42–48. https://doi.org/10.1016/j.ifacol.2016.12.159.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2442d52-12d0-4d79-928a-606eb9de8aa9