PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the characteristics of a low-emission gas turbine combustion chamber operating on a mixture of natural gas and hydrogen

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article is devoted to the investigation of the characteristics of a low-emission gas turbine combustion chamber, which can be used in Floating Production, Storage and Offloading (FPSO) vessels and operates on a mixture of natural gas and hydrogen. A new approach is proposed for modelling the processes of burning out a mixture of natural gas with hydrogen under preliminary mixing conditions in gaseous fuel with an oxidizer in the channels of radial-axial swirlers of flame tubes. The proposed kinetic hydrocarbon combustion scheme is used in three-dimensional calculations for a cannular combustion chamber of a 25 MW gas turbine engine for two combustion models: the Finite-Rate/Eddy-Dissipation and the Eddy Dissipation Concept. It was found that, for the investigated combustion chamber, the range of stable operations, without the formation of a flashback zone in the channels of radial-axial swirlers, is determined by the hydrogen content in the mixture, which is less than 25-30% (by volume). For the operating modes of the chamber without the formation of a flashback zone inside the swirler channels, the emissions of nitrogen oxide NO and carbon monoxide CO do not exceed the values corresponding to modern environmental requirements for emissions of toxic components by gas turbine engines.
Rocznik
Tom
Strony
64--76
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Admiral Makarov National University of Shipbuilding, Geroes of Ukraine, 54025 Mikolayiv, Ukraine
  • Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Ave. 9, 54025 Mikolayiv, Ukraine
autor
  • Jiangsu University of Science and Technology, 2 Megnxi Road, 212003 Zhenjiang, China
  • Gdansk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland
Bibliografia
  • 1. Hydrogen gas turbines. The path towards a zero-carbon gas turbine, ETN Global Report 2020. Available: https:// etn.global/wp-content/uploads/2020/02/ETN-HydrogenGas-Turbines-report.pdf, 2020.
  • 2. M. Nose, T. Kawakami, H. Araki, N. Senba, and S. Tanimura, “Hydrogen-fired Gas Turbine Targeting Realization of CO2-free Society. Mitsubishi Heavy Industries Technical Review,” Available: https://www.mhi.co.jp/technology/ review/pdf/e554/e554180.pdf, 2018.
  • 3. J. Beital, M. Talibi, S. Sadasivuni, and R. Balachandran, “Thermoacoustic Instability Considerations for High Hydrogen Combustion in Lean Premixed Gas Turbine Combustors: A Review,” Hydrogen, vol. 2, pp. 33–57, 2021. DOI: https://doi.org/10.3390/hydrogen2010003.
  • 4. N. Tekin, M. Ashikaga, A. Horikawa, and H. Funke, “Enhancement of fuel flexibility of industrial gas turbines by development of innovative hydrogen combustion systems,” Gas for energy, vol. 2, Available: https://www.researchgate. net/publication/332290711_Enhancement_of_fuel_ flexibility_of_industrial_gas_turbines_by_development_ of_innovative_hydrogen_combustion_systems, 2018.
  • 5. B.S. Soroka, K.E. Pyanykh, V.O. Zgursky, V.V. Gorupa, and V.S. Kudryavtsev, “Energy and environmental characteristics of household gas appliances using methane-hydrogen mixture as a fuel gas,” Oil and gas industry of Ukraine, vol. 6, pp. 3-13, 2020 (In Ukrainian).
  • 6. R. Amaduzzi, M. Ferrarotti, and A. Parente, “Strategies for Hydrogen-Enriched Methane Flameless Combustion in a Quasi-Industrial Furnace,” Frontiers in Energy Research, Available: https://www.frontiersin.org/articles/10.3389/ fenrg.2020.590300/full, 2021. DOI: https://doi.org/10.3389/ fenrg.2020.590300.
  • 7. A. Cappellettia, F. Martellia, E. Bianchib, and E. Trifonic, “Numerical redesign of 100kw MGT combustor for 100% H2 fueling,” Energy Procedia, vol. 45, pp. 1412-1421, 2014. DOI: https://doi.org/10.1016/j.egypro.2014.01.148.
  • 8. S. Barati1, L. De Santoli1, and G. Lo Basso1, “Modelling and Analysis of a Micro Gas Turbine Fuelled with Hydrogen and Natural Gas Blends,” E3S Web of Conferences, vol. 312, 08012, pp. 1-13, 2021. DOI: https://doi.org/10.1051/ e3sconf/202131208012.
  • 9. A.H. Ayed, K. Kusterer, H.H.W. Funke, J. Keinz, and D. Bohn, “CFD based exploration of the dry-low-NOx hydrogen micromix combustion technology at increased energy densities,” Propulsion and Power Research, vol. 6(1), pp. 15-24, 2017. DOI: https://doi.org/10.1016/j. jppr.2017.01.005.
  • 10. A.H. Ayed, K. Kusterer, H.H.W. Funke, and J. Keinz, “CFD Based Improvement of the DLN Hydrogen Micromix Combustion Technology at Increased Energy Densities,” American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), vol. 26(3), pp. 290- 303, 2016.
  • 11. V. Vilag, J. Vilag, R. Carlanescu, A. Mangra, and F. Florean, “CFD Application for Gas Turbine Combustion Simulations,” Edited by G. Ji and J. Zhu, Available: https:// www.intechopen.com/chapters/69672, 2019.
  • 12. S. Reza, M. Rahimi, A. Khoshhal, and A.A. Alsairafi, “CFD Study on Hydrogen-Air Premixed Combustion in a Micro Scale Chamber,” Iran. J. Chem. Chem. Eng, vol. 29(4), pp. 161-172, 2010. DOI: 10.30492/IJCCE.2010.6419.
  • 13. P. Gobbato, M. Masi, A. Toffolo, and A. Lazzaretto, “Numerical simulation of a hydrogen fuelled gas turbine combustor,” International Journal of Hydrogen Energy, vol. 36, pp. 7993-8002, 2011. DOI: https://doi.org/10.1016/j. ijhydene.2011.01.045.
  • 14. M.E.H. Attia, A. Khechekhouche, and Z. Driss, “Numerical Simulation of Methane-Hydrogen Combustion in the Air: Influence on Combustion Parameters,” Indian Journal of Science and Technology, vol. 11(2), pp. 1-8, 2018. DOI: 10.17485/ijst/2018/v11i2/120608.
  • 15. S.I. Serbin, A.V. Kozlovskyi, and K.S. Burunsuz, “Investigations of non-stationary processes in low emissive gas turbine combustor with plasma assistance,” IEEE Trans. Plasma Sci., vol 44(12), pp. 2960-2964, 2016. DOI: 10.1109/ TPS.2016.2607461.
  • 16. B.E. Launder, and D.B. Spalding, “Lectures in Mathematical Models of Turbulence,” London: Academic Press, 1972.
  • 17. I.B. Matveev, S.I. Serbin, V.V. Vilkul, and N.A. Goncharova, “Synthesis Gas Afterburner Based on an Injector Type Plasma-Assisted Combustion System,” IEEE Trans. Plasma Sci., vol. 43(12), pp. 3974-3978, 2015. DOI: 10.1109/ TPS.2015.2475125.
  • 18. I.B. Matveev, and S.I. Serbin, “Theoretical and experimental investigations of the plasma-assisted combustion and reformation system,” IEEE Trans. Plasma Sci., vol. 38(12), pp. 3306-3312, 2010. DOI: 10.1109/TPS.2010.2063713.
  • 19. I.B. Matveev, S.I. Serbin, and N.V. Washchilenko, “Plasma-assisted treatment of sewage sludge,” IEEE Trans. Plasma Sci., vol. 44 (12), pp. 3023-3027, 2016. DOI: 10.1109/ TPS.2016.2604849.
  • 20. I. Matveev, S. Serbin, and S.M. Lux, “Efficiency of a hybrid-type plasma-assisted fuel reformation system,” IEEE Trans. Plasma Sci., vol. 36(6), pp. 2940-2946, 2008. DOI: 10.1109/ TPS.2008.2006843.
  • 21. B.F. Magnussen, and B.H. Hjertager, “On mathematical models of turbulent combustion with special emphasis on soot formation and combustion,” 16th Symp. (Int.) on Combustion. The Combustion Institute, vol. 16(1), pp. 719- 729, 1977.
  • 22. V. Yakhot, and S.A. Orszag, “Renormalization Group Analysis of Turbulence: I. Basic Theory.” Journal of Scientific Computing, vol. 1(1), pp. 1-51, 1986.
  • 23. B.F. Magnussen, “On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow,” American Institute of Aeronautics and Astronautics, Aerospace Sciences Meeting, 19th, St. Louis, pp. 1-7, 1981.
  • 24. I.R. Gran, and B.F. Magnussen, “A numerical study of a bluff-body stabilised diffusion flame. Part 2. Influence of combustion modelling and finite-rate chemistry,” Combustion Science and Technology, vol. 119 (1-6), pp. 191- 217, 1996. DOI: https://doi.org/10.1080/00102209608951999.
  • 25. R. Meloni, “Pollutant Emission Validation of a Heavy-Duty Gas Turbine Burner by CFD Modelling,” Machines, vol. 2, pp. 81-97, 2013. DOI: https://doi.org/10.3390/ machines1030081.
  • 26. “ANSYS Fluent Theory Guide,” ANSYS, Inc., pp. 1-780, 2013.
  • 27. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control), Available: https://eur-lex.europa.eu/legal-content/EN/ TXT/?uri=celex:32010L0075, 2010.
  • 28. O. Cherednichenko, S. Serbin, and M. Dzida, “Application of thermo-chemical technologies for conversion of associated gas in diesel-gas turbine installations for oil and gas floating units,” Polish Maritime Research, vol. 3(103), pp. 181-187, 2019. DOI: https://doi.org/10.2478/pomr-2019-0059.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a23ec301-a0e3-41ef-8b5e-4335e22d68e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.