PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Convolutional neural networks in the SSI analysis for mine-induced vibrations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Computer Methods in Mechanics and Solid Mechanics Conference (24th and 42nd ; 05-08.09.2024 ; Świnoujście ; Polska)
Języki publikacji
EN
Abstrakty
EN
Deep neural networks (DNNs) have recently become one of the most often used softcomputational tools for numerical analysis. The huge success of DNNs in the field of imageprocessing is associated with the use of convolutional neural networks (CNNs). CNNs,thanks to their characteristic structure, allow for the effective extraction of multi-layerfeatures. In this paper, the application of CNNs to one of the important soil-structureinteraction (SSI) problems, i.e., the analysis of vibrations transmission from the free-field next to a building to the building foundation, is presented in the case of mine-induced vibrations. To achieve this, the dataset from in-situ experimental measurements,containing 1D ground acceleration records, was converted into 2D spectrogram imagesusing either Fourier transform or continuous wavelet transform. Next, these images wereused as input for a pre-trained CNN. The output is a ratio of maximal vibration valuesrecorded simultaneously on the building foundation and on the ground. Therefore, the lastlayer of the CNN had to be changed from a classification to a regression one. The obtainedresults indicate the suitability of CNN for the analyzed problem.
Rocznik
Strony
3--28
Opis fizyczny
Bibliogr. 48 poz.,
Twórcy
  • Institute of Technology, University of the National Education Commission, Krakow, Poland
Bibliografia
  • 1. Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature, 521: 436-444, 2015, doi: 10.1038/nature14539.
  • 2. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, The MIT Press, Cambridge, Massachusetts, London, England, 2016.
  • 3. A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, [in:] F. Pereira, C.J. Burges, L. Bottou, K.Q. Weinberger [Eds.], Advances in Neural Information Processing Systems, Vol. 25, pp. 1097-1105, 2012.
  • 4. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv, 2014, arXiv:1409.1556.
  • 5. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, arXiv, 2015, arXiv:1512.03385.
  • 6. S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards real-time object detection with region proposal networks, arXiv, 2015, arXiv: 1506.01497.
  • 7. I.J. Goodfellow et al., Generative adversarial networks, arXiv, 2014, arXiv:1406.2661.
  • 8. H. Wang, B. Raj, On the origin of deep learning, arXiv, 2017, arXiv:1702.07800.
  • 9. D. Hepsiba, J. Justin, Computational intelligence for speech enhancement using deep neural network, Computer Assisted Methods in Engineering and Science, 29(1-2): 71-85, 2022, doi: 10.24423/cames.397.
  • 10. H. Mhaskar, Q. Liao, T. Poggio, When and why are deep networks better than shallow ones?, [in:] Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, Vol. 31, No. 1, pp. 2343-2349, AAAI Press, Palo Alto, California USA, 2017.
  • 11. S.J. Pan, Q. Yang, A survey on transfer learning, IEEE Transactions on Knowledge and Data Engineering, 22(10): 1345-1359, 2010, doi: 10.1109/TKDE.2009.191.
  • 12. F. Yu, X. Xiu, Y. Li, A survey on deep transfer learning and beyond, Mathematics, 10(19): 3619, 2022, doi: 10.3390/math10193619.
  • 13. S. Feng, H. Zhou, H. Dong, Using deep neural network with small dataset to predict material defects, Materials & Design, 162: 300-310, 2019, doi: 10.1016/j.matdes.2018.11.060.
  • 14. F. Khosravikia, M. Mahsuli, M.A. Ghannad, The effect of soil-structure interaction on the seismic risk to buildings, Bulletin of Earthquake Engineering, 16: 3653-3673, 2018, doi: 10.1007/s10518-018-0314-z.
  • 15. J. Fu, J. Liang, M.I. Todorovska, M.D. Trifunac, Soil-structure system frequency and damping: Estimation from eigenvalues and results for a 2D model in layered half-space, Earthquake Engineering and Structural Dynamics, 47: 2055–2075, 2018, doi: 10.1002/eqe.3055.
  • 16. H. Güllü, M. Karabekmez, Effect of near-fault and far-fault earthquakes on a historical masonry mosque through 3D dynamic soil-structure interaction, Engineering Structures, 152: 465-492, 2017, doi: 10.1016/j.engstruct.2017.09.031.
  • 17. E. Ahmadi, Concurrent effects of inertial and kinematic soil-structure interactions on strength-ductility-period relationship, Soil Dynamics and Earthquake Engineering, 117: 174-189, 2019, doi: 10.1016/j.soildyn.2018.10.043.
  • 18. J.F. Semblat et al., Seismic wave amplification: Basin geometry vs soil layering, Soil Dynamics and Earthquake Engineering, 25(7-10): 529-538, 2005, doi: 10.1016/j.soildyn.2004.11.003.
  • 19. S. Chopra, P. Choudhury, A study of response spectra for different geological conditions in Gujarat, India, Soil Dynamics and Earthquake Engineering, 31: 1551-1564, 2011, doi: 10.1016/j.soildyn.2011.06.007.
  • 20. O. Deck, M.A. Heib, F. Homand, Taking the soil-structure interaction into account in assessing the loading of a structure in a mining subsidence area, Engineering Structures, 25(4): 435-448, 2003, doi: 10.1016/S0141-0296(02)00184-0.
  • 21. E. Maciag, K. Kuzniar, T. Tatara, Response spectra of the ground motion and building foundation vibrations excited by rockbursts in the LGC region, Earthquake Spectra, 32(3): 1769-1791, 2016, doi: 10.1193/020515EQS022M.
  • 22. K. Kuzniar, T. Tatara, Full-scale long-term monitoring of mine-induced vibrations for soil-structure interaction research using dimensionless response spectra, Case Studies in Construction Materials, 16: e00801, 2022, doi: 10.1016/j.cscm.2021.e00801.
  • 23. T. Li, M.F. Cai, M. Cai, A review of mining-induced seismicity in China, International Journal of Rock Mechanics and Mining Sciences, 44(8): 1149-1171, 2007, doi: 10.1016/j.ijrmms.2007.06.002.
  • 24. A.V. Lovchikov, Review of the strongest rockbursts and mining-induced earthquakes in Russia, Journal of Mining Science, 49: 572-575, 2013, doi: 10.1134/S1062739149040072.
  • 25. M.E. Hoseny, J. Ma, W. Dawoud, D. Forcellini, The role of soil structure interaction (SSI) on seismic response of tall buildings with variable embedded depths by experimental and numerical approaches, Soil Dynamics and Earthquake Engineering, 164: 107583, 2023, doi: 10.1016/j.soildyn.2022.107583.
  • 26. Y.E. Ibrahim, M. Nabil, Finite element analysis of multistory structures subjected to traininduced vibrations considering soil-structure interaction, Case Studies in Construction Materials, 15: e00592, 2021, doi: 10.1016/j.cscm.2021.e00592.
  • 27. A. Mikami, J.P. Stewart, M. Kamiyama, Effects of time series analysis protocols on transfer functions calculated from earthquake accelerograms, Soil Dynamics and Earthquake Engineering, 28(9): 695-706, 2008, doi: 10.1016/j.soildyn.2007.10.018.
  • 28. S.F. Ghahari, F. Abazarsa, O. Avci, M. Çelebi, E. Taciroglu, Blind identification of the Millikan Library from earthquake data considering soil-structure interaction, Structural Control and Health Monitoring, 23(4): 684-706, 2015, doi: 10.1002/stc.1803.
  • 29. D. Pitilakis, M. Dietz, D.M. Wood, D. Clouteau, A. Modaressi, Numerical simulation of dynamic soil–structure interaction in shaking table testing, Soil Dynamics and Earthquake Engineering, 28(6): 453-467, 2008, doi: 10.1016/j.soildyn.2007.07.011.
  • 30. F. Xu et al., Shaking table test on seismic response of a planar irregular structure with differential settlements of foundation, Structures, 46: 988-999, 2022, doi: 10.1016/j.istruc.2022.10.090.
  • 31. J.E. Luco, M.D. Trifunac, H.L. Wong, Isolation of soil-structure interaction effects by fullscale forced vibration tests, Earthquake Engineering and Structural Dynamics, 16: 1-21, 1988.
  • 32. F. Gara, M. Regni, D. Roia, S. Carbonari, F. Dezi, Evidence of coupled soil-structure interaction and site response in continuous viaducts from ambient vibration tests, Soil Dynamics and Earthquake Engineering, 120: 408-422, 2019, doi: 10.1016/j.soildyn.2019.02.005.
  • 33. K. Kuzniar, L. Chudyba, Evaluation of the influence of some mining tremors and ground vibrations parameters on vibrations transmission from the ground to building [in Polish], [in:] Aktualne problemy wpływów sejsmicznych i parasejsmicznych na budowle, Tom II: Badania wstrząsów górniczych i drgań komunikacyjnych, K. Stypula [Ed.], Vol. 477/2, Seria Inżynieria Lądowa, Wyd. Politechniki Krakowskiej, Krakow, pp. 23-37, 2015.
  • 34. I. Nametevs, K. Sudars, A. Dobrajs, Interpretability versus explainability: Classification for understanding deep learning systems and models, Computer Assisted Methods in Engineering and Science, 29(4): 297-356, 2022, doi: 10.24423/cames.518.
  • 35. C.M. Bishop, Pattern Recognition and Machine Learning, Springer-Verlag, Berlin, 2006.
  • 36. P.C. Jackson, An Introduction to Artificial Intelligence, Dover Publications, New York, 2006.
  • 37. F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain, Psychological Review, 65(6): 386-408, 1958, doi: 10.1037/h0042519.
  • 38. S.I. Gallant, Perceptron-based learning algorithms, IEEE Transactions on Neural Networks, 1(2): 179-191, 1990, doi: 10.1109/72.80230.
  • 39. A. Krizhevsky, Learning Multiple Layers of Features from Tiny Images, Technical Report TR-2009, University of Toronto, Toronto, Ontario, 2009.
  • 40. O. Russakovsky et al., ImageNet large scale visual recognition challenge, arXiv, 2014, arXiv:1409.0575.
  • 41. C. Shorten, T.M. Khoshgoftaar, A survey on image data augmentation for deep learning, Journal of Big Data, 6: 60, 2019, doi: 10.1186/s40537-019-0197-0.
  • 42. Z. Zhou, J. Shin, L. Zhang, S. Gurudu, M. Gotway, J. Liang, Fine-tuning convolutional neural networks for biomedical image analysis: Actively and incrementally, [in:] Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4761–4772, Honolulu, HI, USA, 2017, doi: 10.1109/CVPR.2017.506.
  • 43. K. Kuzniar, T. Tatara, The ratio of response spectra from seismic-type free-field and building foundation vibrations: the influence of rockburst parameters and simple models of kinematic soil-structure interaction, Bulletin of Earthquake Engineering, 18: 907–924, 2020, doi: 10.1007/s10518-019-00734-w.
  • 44. J.B. Allen, L.R. Rabiner, A unified approach to short-time Fourier analysis and synthesis, Proceedings of the IEEE, 65(11): 1558-1564, 1977, doi: 10.1109/PROC.1977.10770.
  • 45. S. Scholl, Fourier, Gabor, Morlet or Wigner: Comparison of time-frequency transforms, arXiv, 2021, arXiv:2101.06707.
  • 46. J.P. Antoine, P. Carrette, R. Murenzi, B. Piette, Image analysis with two-dimensional continuous wavelet transform, Signal Processing, 31(3): 241-272, 1993, doi: 10.1016/0165-1684(93)90085-O.
  • 47. Transfer Learning for Deep Learning, MATLAB & Simulink, MathWorks, 2022, https://www.mathworks.com/discovery/transfer-learning.html.
  • 48. P. Jiang, D. Ergu, F. Liu, Y. Cai, B. Ma, A review of Yolo algorithm developments, Procedia Computer Science, 199: 1066-1073, 2022, doi: 10.1016/j.procs.2022.01.135.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a233fa19-e10b-4af1-a8f9-ddf4dee99430
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.