PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Nitrogen on the Dynamic Recrystallization Behaviors of Vanadium and Titanium Microalloyed Steels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The hot deformation behaviors of vanadium and titanium microalloyed steels containing different nitrogen contents were studied by performing hot compression tests at various temperatures ranging from 900 to 1050°C and strain rates ranging from 0.1 to 10 s-1. The flow stress curves of the experimental steels were analyzed and the effect of nitrogen on the hot deformation behaviors of the vanadium titanium and nitrogen microalloyed steels was discussed. The results reveal that the flow stress increases with increasing nitrogen addition and the critical strain for the onset of dynamic recrystallization(DRX) also increases by adding nitrogen. Therefore, larger strain should be applied to start DRX in the experimental steel containing higher nitrogen content. The material constants and activation energies for hot deformation were determined by regression method and the effect of nitrogen on the activation energy was also discussed referring to the activation energies from the previous researches. It is found that higher nitrogen content contributes to higher activation energy for hot deformation. Furthermore, the DRX kinetics models for the experimental steels were constructed by regression method and the effect of nitrogen on the DRX rate under various deformation conditions was analyzed. And the inhibition of DRX by increasing nitrogen content is confirmed.
Twórcy
autor
  • Technology Center of Angang Steel Co., Ltd., Anshan 114009, Liaoning, China
autor
  • Technology Center of Angang Steel Co., Ltd., Anshan 114009, Liaoning, China
autor
  • Technology Center of Angang Steel Co., Ltd., Anshan 114009, Liaoning, China
autor
  • Angang Steel Co., Ltd., Bayuquan Subsidiary Co., Yingkou 115007, Liaoning, China
Bibliografia
  • [1] J. Hufenbach et al., Mater. Sci. Eng. A 586, 267-275 (2013).
  • [2] M. Hirscvogel, H. V. Dommelen, J. Mater. Proc. Technol. 35, 343-356 (1992).
  • [3] J. H. Reynolds, D. J. Naylor, Mater. Sci. Technol. 4, 586-602 (1998).
  • [4] S. Sheljaskov, J. Mater. Proc. Technol. 46, 3-18 (1994).
  • [5] B. K. Show, R. Veerababu, R. Balamuralikrishnan, G. Malakondaiah, Mater. Sci. Eng. A, 527, 1595-1604. (2010).
  • [6] J. W. Zhao, J. H. Lee, Y. W. Kim, Mater. Sci. Eng. A 559, 427-435 (2013).
  • [7] L. J. Cuddy: in Thermomechanical Processing of Microalloyed Austenite, A.J. DeArdo, G.H. Ratz, P.J. Wray, eds., TMSAIME, Warrendale, PA, 1982, pp. 129-39.
  • [8] L. J. Cuddy, in Thermomechanical Processing of Microalloyed Austenite (Pittsburgh, TMS-AIME ,Warrendale, PA 1984.
  • [9] X. Chun, Q. Sun, X. Chen, Mater. Des. 28, 2523-2527 (2007).
  • [10] R. Petrov, Materials Characterization 53, 51-61 (2004).
  • [11] J. M. Cabrera, A. Al. Omar, J. M. Prado, J. J. Jonas, Metall. Mater. Trans. A 28, 2233-2244. 1997,
  • [12] D. J. Naylor, Iron M. Steel M. 16, 246-252 (1989).
  • [13] S. P. Liu, C. F. Yang, Y. Q. Zhang, Heat Treatment of Metals 26, 7-9 (2001).
  • [14] C. F. Yang, Y. Q. Zhang, Iron & Steel 37, 42-47 (2002).
  • [15] H. L. Wei, G. Q. Liu, X. X. Ming, M. H. Zhang, Mater. Sci. Eng. A 573, 215-221 (2013).
  • [16] H. L. Wei, G. Q. Liu, H. T. Zhao, M. H. Zhang, Mater. Sci. Eng. A 596, 112-120 (2014).
  • [17] B. C. Zhao, T. Zhao, G. Y. Li, Q. Lu. Mater. Sci. Eng. A 604, 117-121 (2014).
  • [18] J. G. Speer, J. R. I. Michael, S. S. Hansen, Met. Trans. A 18A, 211-222 (1987).
  • [19] M. S. Xia, W. H. Sun, X. H. Qin, Iron and Steel 35, 47-51(2000).
  • [20] F. Fang, Y. X. Yin, Q. L. Yong, Iron and Steel 3, 60-65 (2011).
  • [21] E. I. Poliak, J. J. Jonas, Acta Mater. 44, 127-136 (1996).
  • [22] E. I. Poliak, J. J. Jonas, ISIJ Int. 43, 686 (2003).
  • [23] J. B. Jia, K. F. Zhang, Z. Lu, Mater. Sci. Eng. A 607, 630-639 (2014).
  • [24] Y. C. Lin, M. S. Chen, J. Zhang, Mater. Sci. Eng. A 499, 88-92 (2012).
  • [25] Y. W. Xu, D. Tang, Y. Song , X.G. Pan, Mater. Des. 39, 168-174 (2012).
  • [26] H. Mirzadeh, A. Najafizadeh, Mater. Des. 31, 1174-1179 (2010).
  • [27] J. J. Jonas, C. M. Sellars, W. J. Tegart, Int. Met. Rev. 130, 1 (1969).
  • [28] D. Ponge, G. Gottstein, Acta Mater. 46, 69-80 (1998).
  • [29] G. R. Ebrahimi, H. Keshmiri, A. Momeni, M. Mazinani, Mater. Sci. Eng. A 528, 7488-7493 (2011).
  • [30] S. F. Medina, C. A. Hernandez, Acta Mater. 44, 137-148 (1996).
  • [31] X. F. Zhou, Journal of plasticity engineering 14, 20-23 (2007).
  • [32] H. Mirzadeh, A. Najafizadeh, Mater. Des. 31, 4577-4583 (2010).
  • [33] A. Momeni, H. Arabi, A. Rezaei, H. Badri, S.M. Abbasi, Mater. Sci. Eng. A 528, 2158-2163 (2011).
  • [34] Y. W. Xu, D. Tang, Y. Song, X. G. Pan, Mater. Des. 39, 168-174 (2012).
  • [35] Avrami, Journal of Chemical Physics 12, 1103-1112 (1939).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a233722c-4c76-4a35-8f83-889a301dca13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.