Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study investigates the cross wedge rolling (CWR) process for manufacturing a rail axle in a scale of 1:6. Three cases of the rolling process are modelled numerically: standard rolling, wasteless rolling and rolling from a preform. The rolling cases under analysis are compared in terms of material and energy consumption, forming loads as well as propensity to internal and external defect formation. Using the Cockcroft-Latham criterion and the limits of this criterion determined by the rotary compression test, an assessment was made of the propensity of the material to fracture during the rolling processes analysed. Based on numerical results, standard CWR is selected for experimental verification. Obtained experimental results confirm that CWR is an effective method for producing railcar axles that are free from both internal and external defects. The experimental and numerical results obtained confirm that cross wedge rolling technology can be successfully used under industrial conditions for the production of long axles or shafts.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
208--219
Opis fizyczny
Bibliogr. 38 poz., fig.
Twórcy
autor
- Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
- 1. Pater Z. Cross-Wedge Rolling. In: Comprehensive Materials Processing; S.T. Button, Ed.; Elsevier Ltd. 2014; 3: 211-279.
- 2. Bulzak T., Pater Z., Tomczak J., Majerski K. Hot and warm cross-wedge rolling of ball pins – Comparative analysis. Journal of Manufacturing Processes 2020; 50: 90-101.
- 3. Ghiotti A., Fanini S., Bruschi S., Bariani P.F. Modelling of the Mannesmann effect. CIRP Annalsanufacturing Technology 2009; 58: 255-258.
- 4. Pater Z., Tomczak J., Bulzak T., Li Z. Analysis of the use of variable angular parameter tools in crosswedge rolling. Journal of Manufacturing Processes 2022; 83: 768-786.
- 5. Bulzak T., Pater Z., Tomczak J. Validation of a new system for measuring material constants representing damage limits. Measurement 2022; 196: 111265.
- 6. Wei X. H., Shu X. D. Study on production mechanism of end concavity in cross wedge rolling. Advanced Materials Research 2011; 314-316: 468-472.
- 7. Guo D., Lu X. Effect of process parameters on the volume of the stub bar of Rolled Pieceby Cross Wedge Rolling under the different end shapes. Journal of Engineering Mechanics and Machinery 2017; 2(1): 1-7.
- 8. Sun B. S., Zhao Z. L., Wang C. W. Effect of proces parameters on the end-face quality of cross-wedge rolling (CWR) shaft from titanium alloy Ti6Al4V. Metalurgija 2019; 58(1-2): 127-130.
- 9. Pater Z, Tomczak J, Bulzak T. Cavity formation in cross-wedge rolling processes. Journal of Iron and Steel Research International 2019; 26(1): 1-10.
- 10. Shu X. D., Wei X. H., Chen L. P. Influence analysis of block wedge on rolled-piece end quality in cross wedge rolling. Applied Mechanics and Materials 2011; 101-102: 1055-1058.
- 11. Pater Z., Tomczak J., Bulzak T. New forming possibilities in cross wedge rolling processes. Archives of Civil and Mechanical Engineering 2018; 18(1): 149-161.
- 12. Wei J., Shu X., Tian D., et al. Study in shaft end forming quality of closed-open cross wedge rolling shaft using a wedge block. International Journal of Advanced Manufacturing Technology 2017; 93(1-4): 1095-1105.
- 13. Shu X. D., Wei J., Liu C. Study on the control of end quality by one closed cross wedge rolling based wedge block. Metalurgija 2017; 56: 123-126.
- 14. Zeng J., Xu C.., Ren W., Li P. Study on the deformation mechanism for forming shafts without concavity during the near-net forming cross Wedge rolling process. International Journal of Advanced Manufacturing Technology 2017; 91(1-4): 127-136.
- 15. Yang C., Zheng Z., Hu Z. Simulation and experimental study on the concavity of workpiece formed by cross wedge rolling without stub bar. International Journal of Advanced Manufacturing Technology 2018; 95(1-4): 707-717.
- 16. Han S., Shu X., Chen T., et al. Study on the progressive forming mechanism of multi-step shafts based on convex-end billet in the cross wedge rolling technology. Journal of Mechanical Science and Technology 2019; 33(12): 6021-6035.
- 17. Wang R., Wang Y., Wang H., Chen J. Y., Shu X. D. Study on roll-cutting forming method of conical end blank for cross wedge rolling (CWR) without stubbar. Metalurgija 2020; 59(1): 18-22.
- 18. Gronostajski Z., Pater Z., Madej L., Gontarz A., Lisiecki L., Łukaszek-Sołek A. Recent development trends in metal forming. Archives of Civil and Mechanical Engineering. 2019; 19(3): 898-941.
- 19. Pater Z., Bulzak T., Tomczak J. Numerical simulation of a cross-wedge rolling process in a mill with horizontally stacked rolls. Mechanik. 2022; (5-6): 54-58.
- 20. Sun B. S., Zeng X. L., Shu X. D., Peng W. F., Sun P. Feasibility study on forming hollow axle with multiwedge synchrostep by cross wedge rolling. Applied Mechanics and Materials 2012; 201-202: 673-677.
- 21. Peng W., Zheng S., Chiu Y., Shu X., Zhan L. Multiwedge cross wedge rolling process of 42CrMo4 large and Long Hollow shaft. Rare Metal Materials and Engineering 2016; 45(4): 836-842.
- 22. Bulzak T. Ductile fracture prediction in cross-wedge rolling of rail axles. Materials 2021; 14(21) :6638.
- 23. Piedrahita F., Aranda L. G., Chastel Y. Three dimensional numerical simulation of cross-wedge rolling of bars. In: Proc. of the 8th International Conference on Technology of Plasticity ICTP, Verona, Italy 2005, 257-258.
- 24. Silva M. L. N., Pires G. H., Button S. T. Damage evolution during cross wedge rolling of steel DIN 38Mn- SiVS5. Procedia Engineering 2011; 10: 752-757.
- 25. Kache H., Stonis M., Behrens B. A. Development of a warm cross wedge rolling process using FEA and downsized experimental trials. Production Engineering 2012; 6(4-5): 339-348.
- 26. Meyer M., Stonis M., Behrens B. A. Cross wedge rolling and bi-directional forging of preforms for crank-shafts. Production Engineering 2015; 9(1): 61-71.
- 27. Meyer M., Stonis M., Behrens B. A. Cross Wedge rolling of preforms for crankshafts. Key Engineering Materials 2012; 504-506: 205-210.
- 28. Behrens B. A., Stonis M., Rasche N. Influence of the forming angle in cross wedge rolling on the multidirectional forging of crankshafts. International Journal of Material Forming 2018; 11(1): 31-41.
- 29. Pérez I., Ambrosio C. Material saving by means of CWR technology using optimization techniques. AIP Conference Proceedings 2017; 1896: 190001.
- 30. Gutierrez C., Langlois L., Baudouin C., Bigot R., Fremeaux E. Impact of tool wear on cross Wedge rolling process stability and on product quality. AIP Conference Proceedings 2017; 1896: 190008.
- 31. Pater Z., Tomczak J., Bulzak T. Fem simulation of the cross-wedge rolling process for a stepped shaft. Strength of Materials 2017; 49(4): 521-530.
- 32. Pater Z., Tomczak J., Bulzak T. An innovative method for forming balls by cross rolling. Materials 2018; 11(10): 1793.
- 33. Pater Z, Tomczak J. A new cross wedge rolling process for producing rail axles. MATEC Web of Conferences 2018; 190: 11006.
- 34. Pater Z. Study of cross wedge rolling process of BA3002-type railway axle. Advances in Science and Technology Research Journal 2022; 16(2): 225-231.
- 35. Kruse J., Jagodzinski A., Langner J., Stonis M., Behrens B. A. Investigation of the joining zone displacement of cross-wedge rolled serially arranged hybrid parts. International Journal of Material Forming 2020; 13(4): 577-589.
- 36. Pater Z., Tomczak J., Bulzak T. Walczuk-Gągała P. Novel damage calibration test based on cross-wedge rolling. Journal of Materials Research and Technology 2021; 13: 2016-2025.
- 37. Bulzak T., Pater Z., Tomczak J., Wójcik Ł., MurilloMarrodán A. Internal crack formation in cross Wedge rolling: Fundamentals and rolling methods. Journal of Materials Processing Technology 2022; 307: 117681.
- 38. Pater Z., Tomczak J., Bulzak T., Wójcik Ł. Conception of a three roll cross rolling process of hollow rail axles. ISIJ International 2021; 61(3): 895-901.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a22cc273-7ecf-4da2-8d7f-5d803781835d