PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on the propagation of partially coherent cosh-Gaussian beams through an ABCD optical system in non-Kolmogorov turbulence by effective tensor approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An efficient tensor approach is used to study the propagation of partially coherent cosh-Gaussian beams through an ABCD optical system in non-Kolmogorov turbulence. Analytical expressions for the average intensity of the beam propagation are derived. The properties of the average intensity are investigated with a numerical example. One finds that the propagation of the beam with larger spatial coherence length is less affected by distance when the propagation distance is long enough, and as the Ch-parameter increases, the beam propagation is less effected by turbulent atmosphere. It is also found that the average intensity distribution of the cosh-Gaussian beams with larger spatial correlation length is more affected by the structure constant of turbulence (i.e., turbulence level). By choosing a suitable Ch-parameter and spatial coherence length, the partially coherent cosh-Gaussian beams can be better transmitted in non-Kolmogorov turbulence. Our results will be useful in free-space communication.
Czasopismo
Rocznik
Strony
147--158
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
  • College of Optical and Electronic Technology China Jiliang University, Hangzhou 310018, China
autor
  • College of Optical and Electronic Technology China Jiliang University, Hangzhou 310018, China
autor
  • College of Optical and Electronic Technology China Jiliang University, Hangzhou 310018, China
Bibliografia
  • [1] LUKIN I.P., Coherence of Bessel-Gaussian beams propagating in a turbulent atmosphere, Atmospheric and Oceanic Optics 31(1), 2018, pp. 49–59, DOI:10.1134/S1024856018010098.
  • [2] YUAN Y., LEI T., LI Z., LI Y., GAO S., XIE Z., YUAN X., Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams, Scientific Reports 7, 2017, article 42276, DOI:10.1038/srep42276.
  • [3] AVETISYAN H., MONKEN C.H., Mode analysis of higher-order transverse-mode correlation beams in a turbulent atmosphere, Optics Letters 42(1), 2017, pp. 101–104, DOI:10.1364/OL.42.000101.
  • [4] SAAD F., EL HALBA E.M., BELAFHAL A., A theoretical study of the on-axis average intensity of generalized spiraling Bessel beams in a turbulent atmosphere, Optical and Quantum Electronics 49(3), 2017, article 94, DOI:10.1007/s11082-017-0936-4.
  • [5] ZILBERMAN A., GOLBRAIKH E., KOPEIKA N.S., VIRTSER A., KUPERSHMIDT I., SHTEMLER Y., Lidar study of aerosol turbulence characteristics in the troposphere: Kolmogorov and non-Kolmogorov turbulence, Atmospheric Research 88(1), 2008, pp. 66–77, DOI:10.1016/j.atmosres.2007.10.003.
  • [6] ZILBERMAN A., GOLBRAIKH E., KOPEIKA N.S., Propagation of electromagnetic waves in Kolmogorov and non-Kolmogorov atmospheric turbulence: three-layer altitude model, Applied Optics 47(34), 2008, pp. 6385–6391, DOI:10.1364/AO.47.006385.
  • [7] RAO C., JIANG W., LING N., Spatial and temporal characterization of phase fluctuations in non-Kolmogorov atmospheric turbulence, Journal of Modern Optics 47(6), 2000, pp. 1111–1126, DOI:10.1080/09500340008233408.
  • [8] BELAND R.R., Some aspects of propagation through weak isotropic non-Kolmogorov turbulence, Proceedings of SPIE 2375, 1995, pp. 6–16, DOI:10.1117/12.206979.
  • [9] TOSELLI I., ANDREWS L.C., PHILLIPS R.L., FERRERO V., Free space optical system performance for laser beam propagation through non Kolmogorov turbulence for uplink and downlink paths, Proceedings of SPIE 6708, 2007, article 670803, DOI:10.1117/12.732595.
  • [10] TOSELLI I., ANDREWS L.C., PHILLIPS R.L., FERRERO V., Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence, Optical Engineering 47(2), 2008, article 026003, DOI:10.1117/1.2870113.
  • [11] WU G., GUO H., YU S., LUO B., Spreading and direction of Gaussian–Schell model beam through a non-Kolmogorov turbulence, Optics Letters 35(5), 2010, pp. 715–717, DOI:10.1364/OL.35.000715.
  • [12] SHCHEPAKINA E., KOROTKOVA O., Second-order statistics of stochastic electromagnetic beams propagating through non-Kolmogorov turbulence, Optics Express 18(10), 2010, pp. 10650–10658, DOI:10.1364/OE.18.010650.
  • [13] TOSELLI I., WANG F., KOROTKOVA O., LIDAR systems operating in a non-Kolmogorov turbulent atmosphere, Waves in Random and Complex Media 29(4), 2019, pp. 743–758, DOI:10.1080/17455030.2018.1470356.
  • [14] KOROTKOVA O., CAI Y., WATSON E., Stochastic electromagnetic beams for LIDAR systems operating through turbulent atmosphere, Applied Physics B 94(4), 2009, pp. 681–690, DOI:10.1007/s00340-009-3404-4.
  • [15] YUAN Y., YANG Y., Propagation of anomalous vortex beams through an annular apertured paraxial ABCD optical system, Optical and Quantum Electronics 47(7), 2015, pp. 2289–2297, DOI:10.1007/s11082-014-0105-y.
  • [16] CASPERSON L.W., TOVAR A.A., Hermite–sinusoidal-Gaussian beams in complex optical systems, Journal of the Optical Society of America A 15(4), 1998, pp. 954–961, DOI:10.1364/JOSAA.15.000954.
  • [17] GAO X., WANG Q., ZHAN Q., YUN M., GUO H., ZHUANG S., Focal patterns of higher order hyperbolic-cosine-Gaussian beam with one optical vortex, Optical and Quantum Electronics 42(6–7), 2011, pp. 367–380, DOI:10.1007/s11082-011-9468-5.
  • [18] LI J., ZHUANG S., XIE Y., HUANG C., Gradient force pattern of truncated hyperbolic-cosine-Gaussian beam through phase plate focusing system, Optical Engineering 46(12), 2007, article 124201, DOI:10.1117/1.2819345.
  • [19] LI J., GAO X., LI C., XIE Y., The effect of concentric zones phase plate on focal depth of hyperbolic-cosine-Gaussian beam, Laser Journal 29(1), 2008, pp. 16–18.
  • [20] JUN C., ZHANG E., PENG X., CAI Y., Efficient tensor approach for simulating paraxial propagation of arbitrary partially coherent beams, Optics Express 25(20), 2017, pp. 24780–24789, DOI:10.1364/OE.25.024780.
  • [21] CHEN J., DONG W., Efficient tensor approach for propagation of beams of arbitrary shape and coherence through atmospheric turbulence, Optics and Lasers in Engineering 108, 2018, pp. 36–40, DOI:10.1016/j.optlaseng.2018.04.015.
  • [22] GBUR G., Partially coherent beam propagation in atmospheric turbulence, Journal of the Optical Society of America A 31(9), 2014, pp. 2038–2045, DOI:10.1364/JOSAA.31.002038.
  • [23] SCHMIDT J.D., Numerical Simulation of Optical Wave Propagation with Examples in MATLAB, SPIE, 2010, DOI:10.1117/3.866274.
  • [24] CHU X., The relay propagation of partially coherent cosh–Gaussian–Schell beams in turbulent atmosphere, Applied Physics B 98(2–3), 2010, pp. 573–579, DOI:10.1007/s00340-009-3769-4.
  • [25] ZHOU G., CHU X., Propagation of a partially coherent cosine-Gaussian beam through an ABCD optical system in turbulent atmosphere, Optics Express 17(13), 2009, pp. 10529–10534, DOI:10.1364/OE.17.010529.
  • [26] WANG S., ZHAO D., Matrix Optics, CHEP-Springer, 2000.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a22c2120-fb22-4941-9d6c-ea444fea7845
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.