PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation analysis of electric vehicles energy consumption in driving tests

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Symulacyjna analiza energochłonności pojazdów elektrycznych w testach badawczych
Języki publikacji
EN PL
Abstrakty
EN
The assessment of energy flow through electric vehicle systems makes estimating their energy consumption possible. The article presents analyzes of the energy consumption of electric vehicles in selected driving tests (NEDC, WLTC and in real traffic conditions – RDC test) in relation to the vehicles different curb weight. The use of electric motors was also analyzed, providing their operating ranges, data of the energy flow in batteries and the change in their charge level. Simulation tests and analyzes were carried out using the AVL Cruise software. It was found that despite similar vehicle energy consumption values in NEDC and RDC testing, there are significant differences in energy flow in vehicle subsystems. The changes in the battery charge level per 100 km of test drive are similar in both the WLTC and RDC tests (6% difference); for the NEDC test, this difference is the greatest at 25% (compared to the previous tests). The energy consumption of electric vehicles depends significantly on the test itself; the values obtained in the tests are in the ranges of 10.1–13.5 kWh/100 km (NEDC test); 13–15 kWh/100 km (WLTC test) and 12.5–16.2 kWh/100 km in the RDC test. The energy consumption values in the NEDC and WLTC tests, compared to the RDC test, are approximately 20% and 10% lower, respectively. Increasing the vehicle mass increases the energy consumption (increasing the vehicle mass by 100 kg was found to increase the energy consumption by 0.34 kWh/100 km).
PL
Ocena przepływu energii przez układy pojazdów elektrycznych umożliwia oszacowanie ich energochłonności. W artykule przedstawiono analizy dotyczące zużycia energii pojazdów elektrycznych w wybranych testach jezdnych (NEDC, WLTC oraz w rzeczywistych warunkach ruchu – test RDC) w odniesieniu do zróżnicowanej masy pojazdów. Analizie poddano również wykorzystanie silników elektrycznych, przedstawiając mapy ich pracy, wielkości przepływu energii w akumulatorach oraz stopień zmiany ich naładowania. Badania i analizy symulacyjne wykonano z wykorzystaniem oprogramowania AVL Cruise. Stwierdzono, że mimo podobnych wartości energochłonności pojazdów w testach badawczych NEDC oraz RDC, to występują znaczące różnice przepływu energii w układach akumulacji pojazdów. Zmiany stopnia naładowania akumulatora odniesione do 100 km testu są zbliżone w testach WLTC oraz RDC (różnica 6%); dla testu NEDC różnica ta wynosi maksymalnie 25% (w odniesieniu do poprzednich testów). Energochłonność pojazdów elektrycznych jest silnie zależne od testu badawczego; wartości uzyskane w testach kształtują się na poziomie 10,1–13,5 kWh/100 km (test NEDC); 13–15 kWh/100 km (test WLTC) oraz 12,5–16,2 kWh/100 km w teście RDC. Wartości energochłonności w testach NEDC oraz WLTC są odpowiednio mniejsze o około 20% i 10% w odniesieniu do testu RDC. Zwiększenie masy pojazdu zwiększa zużycie energii (zwiększenie o 100 kg masy pojazdu zwiększa zużycie energii o 0,34 kWh/100 km).
Rocznik
Strony
130--137
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Institute of Combustion Engines and Transport Poznan University of Technology ul. Piotrowo 3, 60-965 Poznań, Poland
  • Institute of Combustion Engines and Transport Poznan University of Technology ul. Piotrowo 3, 60-965 Poznań, Poland
Bibliografia
  • 1. Basso R, Kulcsár B, Egardt B, Lindroth P, Sanchez-Diaz I. Energy consumption estimation integrated into the Electric Vehicle Routing Problem. Transportation Research Part D: Transport and Environment 2019; 69: 141–167, https://doi.org/10.1016/j.trd.2019.01.006.
  • 2. Davidov S, Pantoš M. Planning of electric vehicle infrastructure based on charging reliability and quality of service. Energy 2017; 118: 1156–1167, https://doi.org/10.1016/j.energy.2016.10.142.
  • 3. European Commission. Proposal for a regulation of the European Parliament and of the Council setting emission performance standards for new passenger cars and for new light-commercial vehicles as part of the Union's integrated approach to reduce CO2 emissions from LDVs. Brussels, 8.11.2017, SWD(2017) 650 final. ec.europa.eu/clima/sites/clima/files/transport/vehicles/docs/swd_2017_650_p1_en.pdf.
  • 4. Fontaras G, Zacharof N-G, Ciuffo B. Fuel consumption and CO2 emissions from passenger cars in Europe – Laboratory versus real-world emissions. Progress in Energy and Combustion Science 2017; 60: 97–131, https://doi.org/10.1016/j.pecs.2016.12.004.
  • 5. IEA, Global EV Outlook 2019. IEA, Paris, www.iea.org/publications/reports/globalevoutlook2019.
  • 6. Kurtyka K, Pielecha J. The evaluation of exhaust emission in RDE tests including dynamic driving conditions. Transportation Research Procedia 2019; 40: 338–345, https://doi.org/10.1016/j.trpro.2019.07.050.
  • 7. Langbroek J H M, Cebecauer M, Malmsten J, Franklin J P, Susilo Y O, Georén P. Electric vehicle rental and electric vehicle adoption. Research in Transportation Economics 2019; 73: 72–82, https://doi.org/10.1016/j.retrec.2019.02.002.
  • 8. Merkisz J, Pielecha J, Radzimirski S. New trends in emission control in the European Union. Springer Tracts on Transportation and Traffic 2014; 4: 170, https://doi.org/10.1007/978-3-319-02705-0.
  • 9. Micari S, Polimeni A, Napoli G, Andaloro L, Antonucci V. Electric vehicle charging infrastructure planning in a road network. Renewable and Sustainable Energy Reviews 2017; 80: 98–108, https://doi.org/10.1016/j.rser.2017.05.022.
  • 10. Muzi N. New car CO2 standards: Is the job of securing electric cars in Europe done? Transport & Environment 2019. www.transportenvironment.org.
  • 11. Pavlovic J, Marotta A, Ciuffo B. CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures. Applied Energy 2016; 177: 661–670, https://doi.org/10.1016/j.apenergy.2016.05.110.
  • 12. Pielecha I, Cieslik W, Szalek A. Operation of electric hybrid drive systems in varied driving conditions. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2018; 20 (1): 16–23, https://doi.org/10.17531/ein.2018.1.3.
  • 13. Pielecha I, Cieslik W, Szalek A. Operation of hybrid propulsion systems in conditions of increased supply voltage. International Journal of Precision Engineering and Manufacturing 2017; 18: 1633–1639, https://doi.org/10.1007/s12541-017-0192-3.
  • 14. PSPA, 2019. Licznik elektromobilności. Polskie Stowarzyszenie Paliw Alternatywnych. pspa.com.pl
  • 15. Sun B, Zhang T, Ge W, Tan C, Gao S. Driving energy management of front-and-rear-motor-drive electric vehicle based on hybrid radial basis function. Archives of Transport 2019; 49 (1): 47–58, https://doi.org/10.5604/01.3001.0013.2775.
  • 16. Tsokolis D, Tsiakmakis S, Dimaratos A, Fontaras G, Pistikopoulos P, Ciuffo B, Samaras Z. Fuel consumption and CO2 emissions of passenger cars over the New Worldwide Harmonized Test Protocol. Applied Energy 2016; 179: 1152–1165, https://doi.org/10.1016/j.apenergy.2016.07.091.
  • 17. Wei Z, Xu Z, Halim D. Study of HEV power management control strategy based on driving pattern recognition. Energy Procedia 2016; 88: 847–853. https://doi.org/10.1016/j.egypro.2016.06.062.
  • 18. Wu W, Freese D, Cabrera A, Kitch W A. Electric vehicles’ energy consumption measurement and estimation. Transportation Research Part D: Transport and Environment 2015; 34: 52–67, https://doi.org/10.1016/j.trd.2014.10.007.
  • 19. Xie L, Luo Y, Zhang D, Chen R, Li K. Intelligent energy-saving control strategy for electric vehicle based on preceding vehicle movement. Mechanical Systems and Signal Processing 2019; 130: 484–501. https://doi.org/10.1016/j.ymssp.2019.05.027.
  • 20. Zhang S, Gajpal Y, Appadoo S S, Abdulkader M M S. Electric vehicle routing problem with recharging stations for minimizing energy consumption. International Journal of Production Economics 2018; 203: 404–413, https://doi.org/10.1016/j.ijpe.2018.07.016.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a22ab8a9-b7a8-4a66-8d13-3c935271b9a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.