PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Management of the manufacturing process and exploitation of steel and composite shipping containers. Case study and life cycle assessment analysis

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper takes the form of a comparative life cycle assessment (LCA) analysis of 40-foot steel and composite containers based on GaBi® software. Reducing greenhouse gas emissions can be undertaken, among other things, by reducing the weight of the container, which is possible if lighter materials with comparable mechanical properties to steel are used. The LCA analysis allowed us to estimate the energy consumed and the amount of greenhouse gases emitted during the production of a steel and composite container. It turned out that the energy consumed in the production of the composite and steel container is practically equal in value, provided that carbon fiber from the polyolefin precursor is used in production. The processes with the highest energy intensity for container production are carbon fiber and COR-TEN A® steel production and processing. Changing the container material from steel to composite would save fuel and greenhouse gas (GHG) emissions into the atmosphere by 5.1 % and 18.3 % for road transportation and sea shipping, respectively.
Rocznik
Strony
47--62
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Maritime University of Szczecin 1-2 Wały Chrobrego St., 70-500 Szczecin, Poland
Bibliografia
  • 1. Aldosari, S., Khan, M. & Rahatekar, S. (2020) Manufacturing carbon fibres from pitch and polyethylene blend precursors: a review. Journal of Materials Research and Technology 9 (4), pp. 7786‒7806, doi: 10.1016/j. jmrt.2020.05.037.
  • 2. Australian Government (2020) Your Home. [Online]. Available from: https://www.yourhome.gov.au/materials/embodied-energy [Accessed: 29.03.2023].
  • 3. Buchanan, C.A., Charara, M., Sullivan, J.L., Lewis, G.M. & Keoleian, G.A. (2018) Lightweighting shipping containers: Life cycle impacts on multimodal freight transportation. Transportation Research Part D 62, pp. 418‒432, doi: 10.1016/j.trd.2018.03.011.
  • 4. Choqueuse, D. & Davies, P. (2014) Durability of Composite Materials for Underwater Applications. In: Davies, P.; Rajapakse, Y.D.S. (eds) Durability of Composites in a Marine Environment. Springer Dordrecht.
  • 5. Clavereul, J., Guyonnet, D. & Christensen, T.H. (2012) Quantifying uncertainty in LCA-modelling of waste management systems. International Journal of Environment and Waste Management 32, pp. 2482‒2495, doi: 10.1016/j. wasman.2012.07.008.
  • 6. Cresco, J. (2017) Bandwidth study on energy use and potential energy saving opportunities in U.S. carbon fiber reinforced polymer manufacturing. [Online]. Available from: https://www.energy.gov/eere/amo/downloads/ bandwidth-study-us-carbon-fiber-reinforced-polymercomposites-manufacturing [Accessed: 29.03.2023].
  • 7. Cunliffe, A., Jones, N. & Williams, P. (2003) Pyrolysis of composite plastic waste. Environmental Technology 24 (5), pp. 653‒663, doi: 10.1080/09593330309385599.
  • 8. Doukas, H., Spiliotis, E., Jafari, M.A., Giarola, S. & Nikas, A. (2021) Low-cost emissions cuts in container shipping: Thinking inside the box. Transportation Research Part D: Transport and Environment 94, pp. 1‒15, doi: 10.1016/j.trd.2021.102815.
  • 9. European Maritime Safety Agency (2021) Facts and figures: the EMTER report. [Online]. Available from: https:// www.emsa.europa.eu/damage-stability-study/items. html?cid=14&id=4515 [Accessed: 28.03.2023].
  • 10. EUROSTAT (2021) [Online]. Available from: https://ec. europa.eu/eurostat/databrowser/view/mar_mg_am_pvh/ default/table?lang=en [Accessed: 29.03.2023].
  • 11. GHK (2015) A study to examine the benefits of the End of Life Vehicles Directive and the costs and benefits of a revision of the 2015 targets for recycling, re-use and recovery under the ELV Directive. Birmingham: GHK & Bio Intelligence Service. [Online]. Available from: https://ec.europa. eu/environment/pdf/waste/study/annex7.pdf [Accessed: 29.03.2023].
  • 12. Hammond, G. & Jones, C. (2011) Embodied Carbon. The Inventory of Carbon and Energy (ICE). [Online]. Available from: http://www.emccement.com/pdf/Full-BSRIAICE-guide.pdf [Accessed: 29.03.2023].
  • 13. Magnuson, S. & Wagner, B. (2007) Composite Materials Touted for Securing Shipping Containers. National DEFENCE: 2007. [Online]. Available from: https://www. nationaldefensemagazine.org/articles/2007/7/1/2007julycomposite-materials-touted-for-securing-shippingcontainers [Accessed: 29.03.2023].
  • 14. MakeItFrom.com (2023) EN 1.8945 (S355J0WP) Weathering Steel. [Online]. Available from: https://www. makeitfrom.com/material-properties/EN-1.8945- S355J0WP-Weathering-Steel [Accessed: 29.03.2023].
  • 15. Obrecht, M. & Knez, M. (2017) Carbon and resource savings of different cargo container designs. Journal of Cleaner Production 155 (1), pp. 151‒156, doi: 10.1016/j.jclepro. 2016.11.076.
  • 16. Olmer, N., Comer, B., Roy, B., Mao, X. & Rutherford, D. (2017) Greenhouse gas emissions from global shipping, 2013‒2015. [Online]. Available from: https://theicct. org/sites/default/files/publications/Global-shipping-GHGemissions-2013-2015_ICCT-Report_17102017_vF.pdf [Accessed: 29.03.2023].
  • 17. Park, S.J. (2018) Carbon Fibers. 2nd Ed. Springer, doi: 10.1007/978-981-13-0538-2_8.
  • 18. Plastics Today (2014) Composites could revolutionize shipping containers. [Online]. Available from: https:// www.plasticstoday.com/composites-could-revolutionizeshipping-containers [Accessed: 29.03.2023].
  • 19. Riley, T. (2018) Composites are Taking Cargo Transportation to New Depths and Heights. Market Scale 2018. [Online]. Available from: https://marketscale.com/industries/ aec/composites-are-taking-cargo-transportation-to-newdepths-and-heights/ [Accessed: 29.03.2023].
  • 20. depths-and-heights/ [Accessed: 29.03.2023]. 20. Rodrigue, J.P., Comtois, C. & Slack, B. (2013) The Geography of Transport Systems. 3rd Ed. Taylor & Francis Group, doi: 10.4324/9780429346323.
  • 21. Sabnis, A., Mysore, P. & Anant, S. (2015) Construction materials-embodied energy footprint-global warming; interaction. Proceedings of the Structural Engineers World Congress.
  • 22. Shehab, E., Meirbekov, A., Amantayeva, A., Suleimen, A., Tokbolat, S. & Sarfraz, Sa. (2021) Cost modelling system for recycling carbon fiber-reinforced composites. Polymers 13, 4208, pp. 1‒20, doi: 10.3390/polym13234208.
  • 23. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tingor, M.M.B. & Miller, H.L.J. (2007) Climate Change 2007. The Physical Science Basis.
  • 24. Song, D.P. (2021) A literature review. Container shipping supply chain: Planning problems and research opportunities. Logistics-Basel 5 (2), pp. 1‒26, doi: 10.3390/ logistics5020041.
  • 25. Stiller, H. (1999) Material Intensity of Advanced Composite Materials. Wuppertal Papers.
  • 26. Sunter, D., Morrow, W.I., Cresco, J. & Liddell, H. (2015) The manufacturing energy intensity of carbon fiber reinforced polymer composites and its effect on life cycle energy use for vehicle door lightweighting. Proceedings of the 20th International Conference on Composite Materials.
  • 27. Tapper, R.J., Longana, M.L., Norton, A., Potter, K.D. & Hamerton, I. (2020) An evaluation of life cycle assessment and its application to the closed-loop recycling of carbon fibre reinforced polymers. Composites Part B: Engineering 184, pp. 1‒10, doi: 10.1016/j.compositesb.2019.107665.
  • 28. Yildiz, T. (2019) Design and analysis of a lightweight composite shipping container made of carbon fiber laminates. Logistics-Basel 3 (3), pp. 1‒20, doi: 10.3390/ logistics3030018.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a229d7d5-3ccf-4aa8-bb04-c85423b9b89e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.