PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of the impacts of climate change and anthropogenic disturbances on the El Arish coast and seaweed vegetation after ten years in 2010, North Sinai, Egypt

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Human activities on coasts and climate changes during the past ten years have given rise to considerable shoreline changes along the El Arish coast (the northern coast of the Sinai Peninsula). In the El Arish Power Plant, sediment accretion has reached the tip of the breakwater of the cooling water intake basin, necessitating extensive dredging inside the basin. To the east of El Arish Harbour, the shoreline has been in continuous retreat. The differences between the year 2000 and 2010 in the shoreline along the El Arish coast were determined by analysing satellite images from NOAA-AVHRR images. The analyses revealed erosion and accretion patterns along the coast. The physical parameters showed that the minimum water temperature of 18°C was recorded at site I in winter and that the maximum was 40°C at site II in summer. The latter temperature can be attributed to the effluent discharge of cooling water from the El Arish power plant. Spatial and temporal patterns in the distribution and abundance of macroalgae were measured at four sites (I, II, III and IV) along the El Arish coast. The percentage cover of the successional macroalgae exhibited environmental fluctuations. After ten years, the phytocommunity showed that red and green algae were dominant at the study sites. Significant differences between past and current flora were observed. 39 taxa recorded in 2000 were absent in 2010, while 9 taxa not previously reported were present in 2010. These changes are discussed in the context of possible global warming effects. PERMANOVA showed significant changes (p < 0.001) between sites, seasons, species abundance and macroalgal groups along the El Arish coast in 2000 and 2010. The similarity matrix showed a significant difference between the flora in 2010 and that recorded in 2000, indicating poor similarity and changes in species composition among the seasons at the different sites. Most of the algae belonged to the filamentous, coarsely branched and sheet functional form groups.
Czasopismo
Rocznik
Strony
663--685
Opis fizyczny
Bibliogr. 58 poz., fot., tab., wykr.
Twórcy
  • Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
Bibliografia
  • 1. Abdel Rahman S. I., Ahmed M. H., Essa M. M., 2001, Drought monitoring in the Southeastern Mediteranean basin using satellite data, Proc. Int. Geogr. Remote Sens. Symp., IGARSS 2001, July 19-23, Sydney, Australia.
  • 2. Aitken S. N., Yeaman S., Holliday J. A., Wang T. L., Curtis-McLane S., 2008, Adaptation, migration or extirpation: climate change outcomes for tree populations, Evol. Appl., 1 (1), 95-111, http://dx.doi.org/10.1111/j.1752-4571.2007.00013.x.
  • 3. Aleem A.A., 1993, The marine algae of Alexandria, Priv. Public., Alexandria, 135 pp.
  • 4. Anderson M. J., 2001, A new method for non-parametric multivariate analysis of variance, Austral Ecol., 26 (1), 32-46, http://dx.doi.org/10.1111/j.1442-9993.2001.01070.pp.x.
  • 5. Bates C. R., DeWreede R. E., 2007, Do changes in seaweed biodiversity influence associated invertebrate epifauna?, J. Exp. Mar. Biol. Ecol., 344 (2), 206-214, http://dx.doi.org/10.1016/j.jembe.2007.01.002.
  • 6. Boo S. M., Lee I. K., 1986, Studies on benthic algal community in the East coast of Korea. 1. Floristic composition and periodicity of a Sokcho rocky shore, Korean J. Phycol., 1, 107-116.
  • 7. Choi C. G., 2007, Algal flora and Ecklonia stolonifera Okamura (Laminariaceae) population of Youngdo in Busan, Korea, Algae, 22 (4), 313-318, (in Korean), http://dx.doi.org/10.4490/ALGAE.2007.22.4.313.
  • 8. Citadini-Zanette V., Veiga Neto A. J., Veiga S. G., 1979, Algas bentônicas de Imbituba, Santa Catarina, Brasil, Iheringia, Sér. Botân., 25, 111-121.
  • 9. Coles S. L., 2003, Coral species diversity in the Arabian Gulf and the Gulf of Oman: a comparison to the Indo-Pacific region, Smithsonian Atoll Res. Bull., 507, 19 pp.
  • 10. Connell S. D., 2007, Water quality and loss of coral reefs and kelp forests: alternative states and the influence of fishing, [in:] Marine ecology, S. D. Connell & B. M. Gillanders (eds.), Oxford Univ. Press, Melbourne, 556-568.
  • 11. Connell S. D., Russell B. D., Turner D. J., Shepherd S. A., Kildea T., Miller D., Airoldi L., Cheshire A., 2008, Recovering a lost baseline: missing kelp forests from a metropolitan coast, Mar. Ecol.-Prog. Ser., 360, 63-72, http://dx.doi.org/10.3354/meps07526.
  • 12. Cribb A. B., 1983, Marine algae of the southern Great Barrier Reef. Part I. Rhodophyta, Handbook - Aust. Coral Reef Soc., Brisbane, 246 pp. Cullen L., Valladares-Padua C., Rudran R., 2003, Métodos de estudos em biologia da conservaçao e manejo da vida Silvestre, Curitiba, PR: UFPR, Fundação O Boticário, 663 p.
  • 13. Dijkstra J., Westerman E., Harris L., 2010, The effects of climate change on species composition, succession and phenology: a case study, Glob. Change Biol., 17, 2360-2369, http://dx.doi.org/10.1111/j.1365-2486.2010.02371.x.
  • 14. Dukes J. S., Mooney H., 1999, Does global change increase the success of biological invaders?, Trend. Ecol. Evol., 14 (1), 135-139, http://dx.doi.org/10.1016/ S0169-5347(98)01554-7.
  • 15. El Banna M. M., Hereher M. E., 2009, Detecting temporal shoreline changes and erosion/accretion rates, using remote sensing, and their associated sediment characteristics along the coast of North Sinai, Egypt, Environ. Geol., 58 (7), 1419-1427, http://dx.doi.org/10.1007/s00254-008-1644-y.
  • 16. El Shoubaky G. A., 2005, Seasonal variations of seaweeds at El Arish coast of Mediterranean Sea (Egypt), Egypt. J. Phycol., 6, 39-55.
  • 17. Emanuelsson D., Mirchi A., 2007, Impact of coastal erosion and sedimentation along the northern coast of Sinai Peninsula, M. Sc. thesis, Lund University.
  • 18. Faveri C., Scherner F., Farias J., Oliveira E. C. De., Horta P. A., 2010, Temporal changes in the seaweed flora in Southern Brazil and its potential causes, Pan- Am. J. Aquat. Sci., 5 (2), 350-357.
  • 19. Frihy O. E., Badr A. A., Selim M. A., El Sayed W. R., 2002, Environmental Impacts of El Arish Power Plant on the Mediterranean Coast of Sinai, Egypt, Environ. Geol., 42 (6), 604-611, http://dx.doi.org/10.1007/s00254-002-0563-6.
  • 20. Garrabou J., Pérez T., Sartoretto S., Harmelin J. G., 2001, Mass mortality event in red coral (Corallium rubrum, Cnidaria, Anthozoa, Octocorallia) population in the Provence region (France, NW Mediterranean), Mar. Ecol.-Prog Ser., 217, 263-272, http://dx.doi.org/10.3354/meps217263.
  • 21. Halpern B. S., Walbridge S., Kappel C. V., Micheli F., D’Agrosa C., Bruno J. F., Casey K. S., Ebert C., Fox H. E., Fujita R., Heinemann D., Lenihan H. S., Madin E. M. P., Perry M. T., Selig E. R., Spalding M., Steneck R., Watson R., 2008, A global map of human impact on marine ecosystems, Science, 319 (5865), 948-952, http://dx.doi.org/10.1126/science.1149345.
  • 22. Harley C. D. G., 2011, Climate change, keystone predation, and biodiversity loss, Science, 334 (6059), 1124-7, http://dx.doi.org/10.1126/science.1210199.
  • 23. Harley C. D. G., Hughes A. R., Hultgren K. M., Miner B. G., Sorte C. J. B., Thornber C. S., Rodriguez L. F., Tomanek L., Williams S. L., 2006, The impacts of climate change in coastal marine systems, Ecol. Lett., 9 (2), 228-241, http://dx.doi.org/10.1111/j.1461-0248.2005.00871.x.
  • 24. Hoegh-Guldberg O., Mumby P. J., Hooten A. J., Steneck R. S., Greenfield P., Gomez E., Harvell C. D., 2007, Coral reefs under rapid climate change and ocean acidification, Science, 318 (5857), 1737-42, http://dx.doi.org/10.1126/science.1152509.
  • 25. IPCC, 2007, Climate change 2007: The physical science basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (eds.), Cambridge Univ. Press, Cambridge, 996 pp.
  • 26. Jeftic L., 1993, Implications of expected climate change in the Mediterranean region, 278-302, [in:] Regional implications of future climate change, M. Graber, A. Cohen & M. Magaritz (eds.), Proc. Int. Workshop, Weizmann Inst. Sci., Rehovot Israel, April 28-May 2 1991, Israeli Acad. Sci. Human., State of Israel, Minist. Environ. Kaiser M. F., Geriesh M. H., 2007, Water resources assessment at El-Arish area, using remote sensing and GIS, North Sinai, Egypt, Geosci. Remote Sens. Symp., IGARSS 2007, 5323-5326, http://dx.doi.org/10.1109/IGARSS.2007.4424064.
  • 27. Langford T. E. L., 1990, Ecological effects of thermal discharges, Appl. Sci., Elsevier, London, 468 pp.
  • 28. Laubier L., 2001, Climatic changes and trends in marine invertebrates: a need for relevant observing networks and experimental ecophysiology, Atti Assoc. It. Oceanol. Limnol., 14, 15-24.
  • 29. Li X., Pichel W. G., Clement-Colon P., Krasnopolsky V., Sapper J., 2001, Validation of coastal sea and lake surface temperature measurements derived from NOAA/AVHRR data, Int. J. Remote Sens., 22, 1285-1303, http://dx.doi.org/10.1080/01431160151144350.
  • 30. Littler M. M., Arnold K. E., 1982, Primary productivity of marine macroalgal functional-form group from southwestern North America, J. Phycol., 18 (3), 307-311, http://dx.doi.org/10.1111/j.1529-8817.1982.tb03188.x.
  • 31. Littler M. M., Littler D. S., 1980, The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model, Am. Nat., 116 (1), 25-44, http://dx.doi.org/10.1086/283610.
  • 32. Littler M. M., Littler D. S., 1981, Intertidal macrophyte communities from Pacific Baja California and the upper Gulf of California: relatively constant vs. environmentally fluctuating systems, Mar. Ecol.-Prog. Ser., 4, 145-158, http://dx.doi.org/10.3354/meps004145.
  • 33. Littler M. M., Littler D. S., 1984, Relationships between macroalgal functional form groups and substrata stability in a subtropical rocky intertidal system, J. Exp. Mar. Biol. Ecol., 74, 13-34, http://dx.doi.org/10.1016/0022-0981(84)90035-2.
  • 34. Lobban C. S., Harrison P. J., Duncan M. J., 1985, The physiological ecology of seaweed, Cambridge Univ. Press, New York, 35-47.
  • 35. McCormick P. V., Cairns J., 1994, Algae as indicators of climate change, J. Appl. Phycol., 6 (5-6), 509-526, http://dx.doi.org/10.1007/BF02182405.
  • 36. Menge B. A., 2000, Top-down and bottom-up community regulation in marine rocky intertidal habitats, J. Exp. Mar. Biol. Ecol., 250 (1-2), 257-289, http://dx.doi.org/10.1016/S0022-0981(00)00200-8.
  • 37. Nardelli B., Marullo S., Santoleri R., 2005, Diurnal variations in AVHRR SST fields: a strategy for removing warm layer effects from daily images, Remote Sens. Environ., 95 (1), 47-56, http://dx.doi.org/10.1016/j.rse.2004.12.005.
  • 38. Occhipinti-Ambrogi A., 2007, Global change and marine communities: alien species and climate change, Mar. Pollut. Bull., 55 (7-9), 342-52, http://dx.doi.org/10.1016/j.marpolbul.2006.11.014.
  • 39. Occhipinti-Ambrogi A., Ambrogi R., 2009, Global change and loss of biodiversity in the world’s oceans, Studi Trent. Sci. Nat., 86, 91-97.
  • 40. Olsvig-Whittaker L., 2010, Global climate change and marine conservation, [in:] Seaweeds and their role in globally changing environments, A. Israel et al. (eds.), Cell. Origin Life Ext., 15, 21-28.
  • 41. Orfanidis S., 1992, Light requirements for growth of six shade-acclimated Mediterranean macroalgae, Mar. Biol., 112 (3), 511-515, http://dx.doi.org/10.1007/BF00356298.
  • 42. Papenfuss G. F., 1968, A history, catalogue and bibliography of Red Sea benthic algae, Israel, J. Bot., 17, 1-118.
  • 43. Parmesan C., 2006, Ecological and evolutionary responses to recent climate change, Annu. Rev. Ecol. Evol. Syst., 37, 637-669, http://dx.doi.org/10.1146/annurev.ecolsys.37.091305.110100.
  • 44. Parmesan C., Yohe G., 2003, A globally coherent fingerprint of climate change impacts across natural systems, Nature, 421 (6918), 37-42, http://dx.doi.org/10.1038/nature01286.
  • 45. Pérez T., Garrabou J., Sartoretto S., Harmelin J.-G., Francour P., Vacelet J., 2000, Mortalité massive d’invertébrés marins : un événement sans précédent en Méditerranée nord-occidentale, Compte Rendu Acad. Sci. Paris, Sér. III, 323, 853-865, http://dx.doi.org/10.1016/S0764-4469(00)01237-3.
  • 46. Russell B. D., Thompson J. I., Falkenberg L. J., Connell S. D., 2009, Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats, Glob. Change Biol., 15 (9), 2153-2162, http://dx.doi.org/10.1111/j.1365-2486.2009.01886.x.
  • 47. Salat J., Pascual J., 2002, The oceanographic and meteorological station at L’Estartit (NW Mediterranean), Tracking long-term hydrological change in the Mediterranean Sea, CIESM Workshop Series, 16, 29-32.
  • 48. Schils T., Wilson S. C., 2006, Temperature threshold as a biogeographic barrier in northern Indian ocean macroalgae, J. Phycol., 42, 749-756, http://dx.doi.org/10.1111/j.1529-8817.2006.00242.x.
  • 49. Shams El Din N. G., El Moselhy K. H. M., Amer A., 2004, Distribution of some macroalgae in the intertidal zone of the Suez Bay in relation to environmental conditions, Egypt. J. Aquat. Res., 30 (A), 171-188.
  • 50. Shannon C. E., Weaver W., 1949, The mathematical theory of communication, Univ. Illinois Press, Urbana.
  • 51. Stachowicz J. J., Terwin J. R., Whitlatch R. B., Osman R. W., 2002, Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions, P. Natnl. Acad. Sci. USA, 99 (24), 15497-15500.
  • 52. Strickland J. D. H., Parsons T. R., 1972, A practical handbook of seawater analysis, The Alger Press Ltd. Ottawa, 310 pp.
  • 53. Vitousek P. M., D’Antonio C. M., Loope L. L., Rejmanek M., Westbrooks R., 1997, Introduced species: a significant component of human-caused global change, New Zeal. J. Ecol., 21 (1), 116. Walther G. R., Post E., Convey P., Menzel A., Parmesan C., Beebee T. J. C., Fromentin J. M., Hoegh-Guldberg O., Bairlein F., 2002, Ecological responses to recent climate change, Nature, 416, 3893959, http://dx.doi.org/10.1038/416389a.
  • 54. Wernberg T., Smale D. A., Thomsen M. S., 2012, A decade of climate change experiments on marine organisms: procedures, patterns and problems, Glob. Change Biol., 18 (5), 1491-8, http://dx.doi.org/10.1111/j.1365-2486.2012.02656.x.
  • 55. Womersley H. B. S., 1984, The marine benthic flora of southern Australia, part I, Handbook Committ. S. Aust. Govt., Adelaide, 329 pp.
  • 56. Womersley H. B. S., 1987, The marine benthic flora of southern Australia, Part II Handbook Committ. S. Aust. Govt., Adelaide, 484 pp.
  • 57. Wood E. J. F., Zieman J. C., 1969, The effects of temperature on estuarine plant communities, Chesapeake Sci., 10 (3-4), 172-174, http://dx.doi.org/10.2307/1350454.
  • 58. Wootton J. T., Pfister C. A., Forester J. D., 2008, Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset, Proc. Natnl. Acad. Sci. U.S.A., 105 (48), 18848-53, http://dx.doi.org/10.1073/pnas.0810079105.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a229b103-a594-42bd-8dcc-cd6e417e3b1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.