PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A virtual laboratory for radiotracer and sealed-source applications in industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Radioactive sealed sources and radiotracer techniques are used to diagnose industrial process units. This work introduces a workspace to simulate four sealed sources and radiotracer applications, namely, gamma scanning of distillation columns, gamma scanning of pipes, gamma transmission tomography, and radiotracer fl ow rate measurements. The workspace was created in Geant4 Application for Tomographic Emission (GATE) simulation toolkit and was called Industrial Radioisotope Applications Virtual Laboratory. The fl exibility of GATE and the fact that it is an open-source software render it advantageous to radioisotope technology practitioners, educators, and students. The comparison of the simulation results with experimental results that are available in the literature showed the effectiveness of the virtual laboratory.
Czasopismo
Rocznik
Strony
21--27
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Department of Nuclear Engineering King Abdulaziz University P. O. Box 80204, Jeddah, 21589, Saudi Arabia
  • Department of Nuclear Engineering King Abdulaziz University P. O. Box 80204, Jeddah, 21589, Saudi Arabia
  • Department of Nuclear Engineering King Abdulaziz University P. O. Box 80204, Jeddah, 21589, Saudi Arabia
  • Department of Nuclear Engineering King Abdulaziz University P. O. Box 80204, Jeddah, 21589, Saudi Arabia
  • Department of Nuclear Engineering King Abdulaziz University P. O. Box 80204, Jeddah, 21589, Saudi Arabia
Bibliografia
  • 1. Mohd Yunos, M. A. S., Hussain, S. A., Hamdan, M. Y., & Jaafar, A.(2016). Industrial radiotracer technology for process optimizations in chemical industries – A review. Pertanika Journal of Scholarly Research Reviews, 2(3), 20–46.
  • 2. Charlton, J. S. (1986). Radioisotopes in industry. In J. S. Charlton (Ed.), Radioisotope techniques for problem-solving in industrial process plants (pp. 1–8).Dordrecht: Springer. https://doi.org/10.1007/978-94-009-4073-4_1.
  • 3. International Atomic Energy Agency. (2004). Radiotracer applications in industry – a guidebook. Vienna: IAEA. (Technical Report Series no. 423). Available from https://www-pub.iaea.org/MTCD/Publications/PDF/TRS423_web.pdf.
  • 4. Jin, J. -H., & Thereska, J. (2004). Industrial applications of radiotracer and sealed source technology promoted by IAEA. In: Tracer 3. International Conference on Tracers and Tracing Methods, 22–24 June 2004, Ciechocinek, Poland.
  • 5. Farooq, M., Khan, I. H., Ghiyas-ud-Din, , Gul, S., Palige, J., & Chmielewski, A. G. (2003). Radiotracer investigations of municipal sewage treatment stations. Nukleonika, 48(1), 57–61.
  • 6. Smolinski, T., Rogowski, M., Brykala, M., Pyszynska, M., & Chmielewski, A. G. (2018). Studies on hydrometallurgical processes using nuclear techniques to be applied in copper industry. I. Application of 64Cu radiotracer for investigation of copper ore leaching. Nukleonika, 63(4), 123–129. https://doi.org/10.2478/nuka-2018-0015.
  • 7. International Atomic Energy Agency. (2008). Industrial process gamma tomography. Vienna: IAEA. (IAEATECDOC-1589). Available from https://www-pub.iaea.org/MTCD/Publications/PDF/TE_1589_web.pdf.
  • 8. Wang, M. (Ed.). (2015). Industrial tomography: Systems and applications. Elsevier. https://doi.org/10.1016/C2013-0-16466-5.
  • 9. Calvo, W. A. P., Hamada, M. M., Sprenger, F. E., Vasquez, P. A. S., Rela, P. R., Martins, J. F. T., de Matos Pereira, J. C. S., Omi, N. M., & de Mesquita, C. H. (2009). Gamma-ray computed tomography SCANNERS for applications in multiphase system COLUMNs. Nukleonika, 54(2), 129–133.
  • 10. Chuong, H. D., Hung, N. Q., My Le, N. T., Nguyen, V. H., & Thanh, T. T. (2019). Validation of gamma scanning method for optimizing NaI(Tl) detector model in Monte Carlo simulation. Appl. Radiat. Isot., 149, 1–8. https://doi.org/10.1016/j.apradiso.2019.04.009.
  • 11. Shahabinejad, H., & Feghhi, S. A. H. (2015). Design, optimization and performance of source and detector collimators for gamma-ray scanning of a lab-scale distillation column. Appl. Radiat. Isot., 99, 25–34.https://doi.org/10.1016/j.apradiso.2015.02.008.
  • 12. Zain, R. M., Yahya, R., & Mahmood, A. A. (2009). Simulation of gamma scan study on column test rig at evaluation and verifi cation Nuclear Malaysia facility. In Nuclear Malaysia Technical Convention, 6–8 October 2009, Bangi, Malaysia.
  • 13. Haraguchi, M. I., Calvo, W. A. P., & Kim, H. Y. (2018). Tomographic 2-D gamma scanning for industrial process troubleshooting. Flow Meas. Instrum., 62, 235–245. https://doi.org/10.1016/j.flowmeasinst.2017.09.004.
  • 14. Zhang, J., Tuo, X., Wang, Q., Leng, Y., & Shi, R. (2018). Monte Carlo simulation and collimator optimization for tomographic gamma scanning. In 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2017 – Conference Proceedings. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/NSSMIC.2017.8532877.
  • 15. Kim, J., Jung, S., Moon, J., Kwon, T., & Cho, G. (2011). Monte Carlo simulation for the design of industrial gamma-ray transmission tomography. Progress in Nuclear Science and Technology, 1, 263–266. Retrieved from http://www.aesj.net/document/pnst001/263.pdf.
  • 16. Kasban, H., Zahran, O., Arafa, H., El-Kordy, M., Elaraby, S. M. S., & Abd El-Samie, F. E. (2010). Laboratory experiments and modeling for industrial radiotracer applications. Appl. Radiat. Isot., 68(6), 1049–1056.https://doi.org/10.1016/j.apradiso.2010.01.044.
  • 17. Sheoran, M., Chandra, A., Bhunia, H., Bajpai, P., & Pant, H. J. (2018). Residence time distribution studies using radiotracers in chemical industry-A review. Chem. Eng. Commun., 205(6), 739–758. https://doi.org/10.1080/00986445.2017.1410478.
  • 18. Park, J. G., Kim, C. H., Han, M. C., Jung, S. H., Kim, J. B., & Moon, J. (2012). Optimization of detection geometry for industrial SPECT by Monte Carlo simulations. J. Instrum., 8, C04006(5pp.). https://doi.org/10.1088/1748-0221/8/04/C04006.
  • 19. International OpenGATE collaboration. (2020).GATE. Retrieved from http://www.opengatecollaboration.org/
  • 20. Banoqitah, E., Taha, E., Elmoujarkach, E., Alsebaie,S., Subahi, A., & Alsharif, S. (2018). A Monte Carlo study of arms effect in myocardial perfusion of normal and abnormal cases utilizing STL heart shape. Results Phys., 10, 323–331. https://doi.org/10.1016/j.rinp.2018.06.028.
  • 21. Lee, S., Gregor, J., & Osborne, D. (2013). Development and validation of a complete GATE model of the Siemens Inveon trimodal imaging platform. Mol. Imaging, 12(7), 434–445. https://doi.org/10.2310/7290.2013.00058.
  • 22. Bouzid, D., Bert, J., Dupre, P. F., Benhalouche, S.,Pradier, O., Boussion, N., & Visvikis, D. (2015). Monte-Carlo dosimetry for intraoperative radiotherapy using a low energy x-ray source. Acta Oncol., 54(10), 1788–1795. https://doi.org/10.3109/0284186X.2015.1016623.
  • 23. Spirou, S. V., Makris, D., & Loudos, G. (2015). Does the setup of Monte Carlo simulations infl uence the calculated properties and effect of gold nanoparticles in radiation therapy? Phys. Medica, 31(7), 817–821.https://doi.org/10.1016/j.ejmp.2015.05.008.
  • 24. Taha, E., Djouider, F., & Banoqitah, E. (2018). Monte Carlo simulations for dose enhancement in cancer treatment using bismuth oxide nanoparticles implanted in brain soft tissue. Australas. Phys. Eng. Sci. Med., 1–8. https://doi.org/10.1007/s13246-018-0633-z.
  • 25. Jan, S., Santin, G., Strul, D., Staelens, S., Assié, K.,Autret, D., Avner, S., Barbier, R., Bardies, M., Bloomfi eld, P. M., Brasse, D., Breton, V., Bruyndonckx, P.,Buvat, I., Chatziioannoull, A. F., Choil, Y., Chung,Y. H., Comtat, D., Donnarieix, D., Ferrer, L., Gllick, S. J., Groissellle, C. J., Guez, D., Honore, P. -F.,Kerhoas-Cavata, S., Kirov, A. S., Kohlil, V., Koole,M., Krieguer, M., van der Laan, D. L., Lamare, E.,Largeron, G., Lartizien, C., Lazaro, D., Maas, M. C.,Maigne, L., Mayet, F., Melot, F., Merheb, C., Pennacchio, E., Perez, J., Pietrzyk, U., Rannoull, F. R., Rey,M., Schaart, D. R., Schmidtlein, C. R., Simon, L.,Song, T. Y., Vieira, J. -M., Visvikis, D., Van de Walle,R., Wieers, E., & Morel, C. (2004). GATE: a simulation toolkit for PET and SPECT. Phys. Med. Biol.,49(19), 4543–4561. https://doi.org/10.1088/0031-9155/49/19/007.
  • 26. Mohammed, M. S. H. (2007). Investigation of proces equipment in petrochemical industry using radioisotope technology. Sudan Academy of Sciences.
  • 27. International Atomic Energy Agency. (2002). Radioisotope applications for troubleshooting and optimizing industrial processes. Vienna: IAEA.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a227df9f-414a-4563-bb2a-424b36b6827f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.