Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wykrywanie zwarć międzyzwojowych w silniku indukcyjnym przy użyciu XGBoost, KNN i Random Forest
Języki publikacji
Abstrakty
In this research endeavor, the focus was directed towards investigating a specific fault occurrence within an induction motor, namely an inter-turn short circuit (ITSC), intentionally induced within phase A of the motor. The employed dataset encompassed both correct operational states and instances afflicted with the aforementioned fault, with parameters such as current flows and torque outputs meticulously recorded and analyzed. When employing a methodology rooted in machine learning, a suite of algorithms was applied to discern and identify the presence of the fault. From among the array of algorithms utilized, the notable contenders included Random Forest (RF), k-nearest neighbors (KNN), and Extreme Gradient Boosting (XGBoost), each meticulously trained and tested on the dataset to gauge their efficacy in fault detection. The outcomes obtained in the mentioned study unequivocally demonstrate the superiority of the Random Forest algorithm in terms of accuracy assessment, boasting a remarkable accuracy rate of 99.7%. In the stark contrast, both KNN and XGBoost algorithms exhibited comparatively lower accuracy rates, standing at 96.6% and 96.5%, respectively.
W tym przedsięwzięciu badawczym skupiono się na badaniu konkretnego wystąpienia usterki w silniku indukcyjnym, a mianowicie zwarcia międzyzwojowego (ITSC), celowo indukowanego w fazie A silnika. Zastosowany zbiór danych obejmował zarówno prawidłowe stany operacyjne, jak i przypadki dotknięte wyżej wymienionymi usterkami, przy czym parametry takie jak przepływy prądu i wyjściowy moment obrotowy były skrupulatnie rejestrowane i analizowane. Stosując metodologię opartą na uczeniu maszynowym, zastosowano zestaw algorytmów w celu rozpoznania i zidentyfikowania obecności usterki. Wśród szeregu wykorzystywanych algorytmów godnymi uwagi konkurentami byli Random Forest (RF), k-najbliżsi sąsiedzi (KNN) i Extreme Gradient Boosting (XGBoost), każdy skrupulatnie przeszkolony i przetestowany na zbiorze danych w celu oceny ich skuteczności w wykrywaniu usterek. Wyniki uzyskane w tym badaniu jednoznacznie wskazują na wyższość algorytmu Random Forest pod względem oceny dokładności, który może pochwalić się niezwykłym współczynnikiem dokładności wynoszącym 99,7%. Dla kontrastu, zarówno algorytmy KNN, jak i XGBoost wykazywały stosunkowo niższe wskaźniki dokładności, wynoszące odpowiednio 96,6% i 96,5%.
Wydawca
Czasopismo
Rocznik
Tom
Strony
248--253
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
- Electrical Drives Laboratory, University of Sciences and Technology, Oran, Algeria
autor
- Laboratoy Applied Automation and Industrial Diagnostics at the Department of Electrical Engineering in the Faculty of Science and Technology. University of Djelfa
autor
- Energy Systems Applications Laboratory (LASER), Faculty of Science and Technology, University of Djelfa, Algeria
autor
- Department of Electrical Energy, Silvan Vocational School, Dicle University
Bibliografia
- [1] Kowalski J., Jak pisać tekst do Przeglądu, Przegląd Elektrotechniczny, 78 (2002), nr 5, 125-128 Improvement in Induction Motor for Electric Vehicle Application Based on Teamwork Optimization, Advances in Electrical and Electronic Engineering, vol. 20, no 4, p. 359, 2022, DOI: 10.15598/aeee.v20i4.4538.
- [2] M. A. Mohamed, A. A. A. Mohamed, M. Abdel-Nasser, E. E. M. Mohamed, M. A. M. Hassan, Induction motor broken rotor bar faults diagnosis using ANFIS-based DWT, International Journal of Modelling and Simulation, vol. 41, no. 3, pp. 220–233, 2021, DOI: 10.1080/02286203.2019.1708173.
- [3] M. Tang, A. Wang, and Z. Zhu, Asynchronous Motor Fault Diagnosis Output Based on VMD-XGBoost, IEEE 4th China International Youth Conference on Electrical Engineering, pp. 1–7, 2023, DOI: 10.1109/CIYCEE59789.2023.10401350
- [4] Induction Motor Stator Winding Inter-Tern Short Circuit Fault Detection Based on Start-Up Current Envelope Energy, Sensors,
- [5] A. Bouzida, R. Abdelli, A. Boudouda, Induction Motor Mechanical Defect Diagnosis Using Dwt Under Different Loading Levels, Acta Polytechnica, vol. 63, no. 1, pp. 1–10, 2023, DOI: 10.14311/AP.2023.63.0001.
- [6] M. Otero, P. M. De La Barrera, G. R. Bossio, R. Leidhold, Stator inter-turn faults diagnosis in induction motors using zerosequence signal injection, IET Electric Power Applications, vol. 14, no. 14, pp. 2731–2738, 2020, DOI: 10.1049/ietepa. 2020.0461.
- [7] K. Barrera-llanga, J. Burriel-valencia, A Comparative Analysis of Deep Learning Convolutional Neural Network Architectures for Fault Diagnosis of Broken Rotor Bars in Induction Motors, Sensors, vol. 23, no. 19, pp. 8196, 2023, DOI: 10.3390/s23198196.
- [8] I. Ouachtouk, S. El Hani, K. Dahi, Intelligent bearing fault diagnosis method based on HNR envelope and classification using supervised machine learning algorithms, Advances in Electrical and Electronic Engineering, vol. 19, no 4, p. 282-294, 2021, DOI: 10.15598/aeee.v19i4.4183
- [9] A. U. Rehman, W. Jiao, J. Sun, M. Sohaib, Y. Jiang, M. Shahzadi, M. I. Khan, Efficient fault detection of rotor minor inter-turn short circuit in induction machines using wavelet transform and empirical mode decomposition, Sensors, vol. 23, no 16, p. 7109, 2023, DOI: 10.3390/s23167109.
- [10] R. P. P. de Souza, C. M. Agulhari, A. Goedtel, M. F. Castoldi, Inter-turn short-circuit fault diagnosis using robust adaptive parameter estimation, International Journal of Electrical Power & Energy Systems, vol. 139, p. 107999, 2022, DOI: 10.1016/j.ijepes.2022.107999.
- [11] U. Dongare, B. Umre, M. Ballal, Stator inter-turn short-circuit fault diagnosis in induction motors applying VI loci-based technique, Energy Reports, vol. 9, pp. 1483–1493, 2023, DOI: 10.1016/j.egyr.2023.06.043.
- [12] T. Ghanbari, A. Mehraban, E. Farjah, Inter-turn fault detection of induction motors using a method based on spectrogram of motor currents, Measurement, vol. 205, p. 112180, 2022, DOI: 10.1016/j.measurement.2022.112180.
- [13] P. Luo, Y. Yang, J. Xu, Detection of inter-turn short-circuit fault in induction motors, by Park’s vector difference approach, in 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference, IEEE, Vol. 4, pp. 207-211, 2021. DOI:10.1109/IMCEC51613.2021.9482130.
- [14] A. Y. Jaen-Cuellar, D. A. Elvira-Ortiz, J. J. Saucedo-Dorantes, Statistical Machine Learning Strategy and Data Fusion for Detecting Incipient ITSC Faults in IM, Machines, vol. 11, no. 7, p. 720, 2023, DOI: 10.3390/machines11070720.
- [15] S. Aguayo-tapia, G. Avalos-almazan, J. M. Ramirez-cortes, J. D. J. Rangel-magdaleno, Physical Variable Measurement Techniques for Fault Detection in Electric Motors, Energies, vol. 16, no 12, p. 4780. 2023, DOI: 10.3390/en16124780.
- [16] M. C. Kim, J. H. Lee, D. H. Wang, I. S. Lee, Induction Motor Fault Diagnosis Using Support Vector Machine, Neural Networks, and Boosting Methods, Sensors, vol. 23, no. 5, p. 2585, 2023, DOI: 10.3390/s23052585.
- [17] B. Akhil Vinayak, K. Anjali Anand, G. Jagadanand, Waveletbased real-time stator fault detection of inverter-fed induction motor, IET Electric Power Applications, vol. 14, no. 1, pp. 82– 90, 2020, DOI: 10.1049/iet-epa.2019.0273.
- [18] F. Babaa, O. Bennis, An accurate inter-turn short circuit faults model dedicated to induction motors, International Journal of Electrical and Computer Engineering, vol. 11, no. 1, pp. 9–16, 2021, DOI: 10.11591/ijece.v11i1.pp9-16.
- [19] S. Kang, N. Kim, Detection of inter-turn short circuit fault in PMSM using SVM and negative sequence current, 2021, https://github.com/sojukang/Detection-of-inter-turn-short-circuit fault-in-PMSM-using-SVM-and-negative-sequence-current.
- [20] G. Rajamany, S. Srinivasan, K. Rajamany, R. K. Natarajan, Induction Motor Stator Interturn Short Circuit Fault Detection in Accordance with Line Current Sequence Components Using Artificial Neural Network, Journal of Electrical and Computer Engineering, p. 1-11, 2019, DOI: 10.1155/2019/4825787.
- [21] R. Guo, Z. Zhao, T. Wang, G. Liu, J. Zhao, Degradation State Recognition of Piston Pump Based on ICEEMDAN and XGBoost, Applied Sciences, vol. 10, no 18, p. 6593, DOI: 10.3390/app10186593.
- [22] Ł. Sztangret, I. Olejarczyk-Wożeńska, K. Regulski, G. Gumienny, B. Mrzygłód, The Use of the XGBoost and Kriging Methods in the Prediction of the Microstructure of CGI Cast Iron, Archives of Foundry Engineering, vol. 23, no. 4, p. 22, 2023, DOI:10.24425/afe.2023.146671.
- [23] A. Rakhmadi, T. Hosoda, K. Saito, Microwave renal denervation temperature prediction using hybrid machine learning: in silico evaluation using human body model, IEICE Electronics Express, vol. 20, no. 11, pp. 1–6, 2023, DOI: 10.1587/elex.20.20230118.
- [24] M. Aishwarya, R. M. Brisilla, Design and Fault Diagnosis of Induction Motor Using ML-Based Algorithms for EV Application, IEEE Access, vol. 11, pp. 34186–34197, 2023, DOI: 10.1109/ACCESS.2023.3263588.
- [25] P. Pietrzak, M. Wolkiewicz, On-line detection and classification of pmsm stator winding faults based on stator current symmetrical components analysis and the knn algorithm, Electronics, vol. 10, no. 15, 2021, DOI: 10.3390/electronics10151786.
- [26] S. Uddin, M. R. Islam, S. A. Khan, J. Kim, J. M. Kim, S. M. Sohn, B. K. Choi, Distance and Density Similarity Based Enhanced k -NN Classifier for Improving Fault Diagnosis Performance of Bearings, Shock and Vibration, vol. 2016, 2016, DOI: 10.1155/2016/3843192.
- [27] P. Kumar, A. S. Hati, Review on Machine Learning Algorithm Based Fault Detection in Induction Motors, Archives of Computational Methods in Engineering, vol. 28, no. 3, pp. 1929–1940, 2021, DOI: 10.1007/s11831-020-09446-w.
- [28] M. Azhari, A. Alaoui, Z. Achraoui, B. Ettaki, J. Zerouaoui, Adaptation of the random forest method: Solving the problem of Pulsar Search, Proceedings of the 4th International Conference on Smart City Applications, p. 1-6, 2019, DOI: 10.1145/3368756.3369004.
- [29] M. Tahir, S. Tenbohlen, Transformer Winding Fault Classification and Condition Assessment Based on Random Forest Using FRA, Energies, vol. 16, no. 9, pp. 1–16, 2023, DOI: 10.3390/en16093714.
- [30] N. Yang, H. Ismail, Robust Intelligent Learning Algorithm Using Random Forest and Modified-Independent Component Analysis for PV Fault Detection: In Case of Imbalanced Data, IEEE Access, vol. 10, pp. 41119–41130, 2022, DOI: 10.1109/ACCESS.2022.31664.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a225cb16-6e82-48a3-ae4f-8bf9eaff298d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.