PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

MOX and UOX Fuel Melt Margin for European Pressurized Reactor

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Safety of Nuclear Power Plants (NPP) is the most important issue during its design and maintenance. Crucial area is nuclear isle where irradiated elements occur. During severe accidents in nuclear reactor core very dangerous is possibility of fuel melt which can lead to release of enormous amounts of radioactive elements. Nowadays Uranium Oxide fuels (UOX) as well as Mixed Oxides fuels (MOX) is under consideration for operating existing and planned NPPs. In this paper prepared Thermal-Hydraulics (TH) model and reliable thermal conductivity of UOX and MOX fuels relations are used for the margin to melt for UOX and MOX fuels calculations. This evaluation is performed for European Pressurized Reactor (EPR) geometry and thermophysical parameters.
Rocznik
Strony
169--177
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, Poland
autor
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, Poland
autor
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, Poland
autor
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, Poland
Bibliografia
  • [1] J. Wallenius, Transmutation of Nuclear Waste, KTH, Blykalla böcker och spel, 2011.
  • [2] H. R. Trellue, Safety and neutronics: A comparison of mox vs uo2 fuel, Progress in Nuclear Energy 48 (2006) 135–145.
  • [3] J. Zakova, Advanced fuels for thermal spectrum reactors, Ph.D. thesis, KTH Reactor Physics Division, Stockholm, Sweden (2012).
  • [4] S. Feher, T. Reiss, A. Wirth, Mox fuel effects on the isotope inventory in lwrs, Nuclear Engineering and Design 252. doi:10.1016/j.nucengdes.2012.06.035.
  • [5] P. C. Burns, R. C. Ewing, A. Navrotsky, Nuclear fuel in a reactor accident, Science 335. doi:10.1126/science.1211285.
  • [6] A. Romano, C. A. Shuffler, H. D. Garkisch, D. R. Olander, N. E. Todreas, Fuel performance analysis for pwr cores, Nuclear Engineering and Design 239. doi:10.1016/j.nucengdes.2008.11.022.
  • [7] Z. Xu, Design strategies for optimizing high burnup fuel in pressurized water reactors, Ph.D. thesis, Massachusetts Institute of Technology (2003).
  • [8] L. Yun, Modeling the performance of high burnup thoria and urania pwr fuel, Ph.D. thesis, Massachusetts Institute of Technology (2002).
  • [9] V. V. Rondinella, T. Wiss, The high burn-up structure in nuclear fuel, Materials Today 13. doi:10.1016/S1369- 7021(10)70221-2.
  • [10] C. T. Walker, D. Staicu, M. Sheindlin, D. Papaioannou, W. Goll, F. Sontheimer, On the thermal conductivity of uo2 nuclear fuel at a high burn-up of around 100 mwd/kghm, Journal of Nuclear Materials 350. doi:10.1016/j.jnucmat.2005.11.007.
  • [11] Y. Qi, P. Henningson, J. Strumpell, S. H. Shann, The effect of fuel thermal conductivity degradation with burnup on pwr licensing limits, in: 18th International Conference on Nuclear Engineering, 2010.
  • [12] P. O. Stręciwilk, P. Darnowski, A. Dominiak, Nuclear reactor cooling channel thermal-hydraulics numerical model implemented in matlab environment, in: Nuclear Power Development: A Challenge for Science and Industry Conference Mądralin 2013, Warsaw, 2013.
  • [13] P. O. Stręciwilk, Construction of a simplified thermalhydraulics numerical model in PWR nuclear reactor core, BSC thesis, Warsaw University of Technology (2013).
  • [14] R. Nijsing, Temperature and heat flux distribution in nuclear fuel element rods, Nuclear Engineering and Design 4.
  • [15] S. Levy, Two-Phase Flow in Complex Systems, John Wiley & Sons Inc., 1999.
  • [16] M. S. Kazimi, N. E. Todreas, Nuclear Systems I: Thermal Hydraulic Fundamentals, 3rd Edition, Taylor and Francis, Levittown, 1993.
  • [17] Y. A. Cengel, Heat and mass transfer: a practical approach, 3rd Edition, McGraw-Hill, New York, 2006.
  • [18] Areva, U.S. EPR Application Documents, FSAR, Tier 2, Chapter 4.3: Nuclear Design.
  • [19] M. Holmgren, X-Steam, Thermodynamic properties of water and steam, 2007 MATLAB Steam-Water Tables based on IAPWS IF-97.
  • [20] H. Anglart, Thermal-Hydraulics in Nuclear Systems, 1st Edition, Institute of Heat Engineering Warsaw University of Technology, Warsaw, 2013.
  • [21] J. J. Carbajo, G. L. Yoder, S. G. Popov, V. K. Ivanov, A review of the thermophysical properties of mox and uo2 fuels, Journal of Nuclear Materials 299. doi:10.1016/S0022-3115(01)00692-4.
  • [22] M. G. Adamson, E. A. Aitken, R. W. Caputi, Experimental and thermodynamic evaluation of the melting behavior of irradiated oxide fuels, Journal of Nuclear Materials 130. doi:10.1016/0022-3115(85)90323-X.
  • [23] C. Ronchi, M. Sheindlin, M. Musella, G. J. Hyland, Thermal conductivity of uranium dioxide up to 2900 k from simultaneous measurement of the heat capacity and thermal diffusivity, Journal of Applied Physics 85. doi:10.1063/1.369159.
  • [24] J. Komatsu, T. Tachibana, K. Konashi, The melting temperature of irradiated oxide fuel, Journal of Nuclear Materials 154. doi:10.1016/0022-3115(88)90116-X.
  • [25] Framatome ANP, EPR (2005).
  • [26] Boston Consulting Group, Economic Assessment of Used Nuclear fuel Management in the United States (2006).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a21b2913-181a-40e3-919d-6523d0474ed6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.