PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Mechanical Properties of External Unilateral Fixation Device in the Case of Torque Load

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Analysis of mechanical properties of external unilateral fixation device „Ultra X“, in the case of torque load, is presented in this paper. Fixation device is applied on lower leg in the case of unstable fracture. Computer aided design (CAD) model and finite element model (FEM) are developed according to the dimensions and material properties of real fixation device. In the next step principal stress and deformation analysis is performed in CATIA V5 software. During numerical analysis values of stresses at critical places are monitored and analyzed. In addition, values of displacements are measured on important places on fixation device and bone fracture. Using values of displacements at the place of bone fracture, stiffness of the fracture is calculated. The same methodology is used to calculate stiffness of the fixation device. Using obtained results, several conclusions about the mechanical properties of the fixation device “Ultra X” are formulated at the end of the paper.
Twórcy
autor
  • University of Sarajevo, Faculty of Mechanical Engineering, Vilsonovo šetalište 9, 71000 Sarajevo, Bosnia and Herzegovina
  • University of Sarajevo, Faculty of Mechanical Engineering, Vilsonovo šetalište 9, 71000 Sarajevo, Bosnia and Herzegovina
  • University of Sarajevo, Faculty of Mechanical Engineering, Vilsonovo šetalište 9, 71000 Sarajevo, Bosnia and Herzegovina
  • University of Sarajevo, Faculty of Mechanical Engineering, Vilsonovo šetalište 9, 71000 Sarajevo, Bosnia and Herzegovina
Bibliografia
  • 1. Mešić E., Avdić V., Pervan N. and Repčić N. Finite element analysis and experimental testing of stiff- ness of the Sarafix external fixator. Procedia Engi-neering 2015; 100: 1598–1607.
  • 2. Mešić E., Pervan N., Repčić N., Muminović A. Research of influential constructional parameters on the stability of the fixator Sarafix. Annals of DAAAM for 2012 & Proceedings of the 23rd International DAAAM Symposium Intelligent Manufacturing & Automation: Focus on Sustainability, Editor: Katalinic B., Zadar, Croatia, October 24th– 27th, 2012; 561–564.
  • 3. Vossoughi, J., Youm, Y., Bosse, M., Burgess, A.R., Poka A. Structural Stiffness of the Hoffmann Sim- ple Anterior Tibial External Fixation Frame, 5th Southern Biomedical Engineering Conference, Louisiana, October 20 and 21, 1986.
  • 4. Moroz, T.K., Finlay, J.B., Rorabeck, C.H., Bourne R.B. Stability of the Original Hoffmann and AO Tubular External Fixation Devices, Medical & Biological Engineering & Computing 1988; 26: 271–276.
  • 5. Paley, D., Fleming, B., Kristiansen, T., Pope M. A biomechanical analysis of the Ilizarov external fixator, Operativni principi metode Ilizarov, A.S.A.M.I. grupa, Zagreb 1995.
  • 6. Simpson, A.H.R.W., Cunningham J.L., Kenwright J. The Forces which Develop in the Tissues During Leg Lenghtening”, A Clinical Study, Nuffield Othopaedic Centre, Oxford, England, British Editorial Society of Bone and Joint Surgery 1996.
  • 7. Radke, H., Aron, D.N., Applewhite, A., Zhang G. Biomechanical Analysis of Unilateral External Skeletal Fixators Combined with IM-Pin and without IM-Pin Using Finite-Element Method, Veterinary Surgery 2006; 35: 15–23.
  • 8. Meleddu, A., Barrault, S. andZysset P.K. A Rigor-Table 4. Values of principal stresses for maximal torque load Place on the fixation design Values of principal stresses at critical places of the design [MPa] Von Mises stresses at critical places [MPa] PM PM+ PM- PM+ PM- - σ1 σ2 σ3 σ1 σ2 σ3 σvM σvM 1 389.8 3.493 1.584 -3.839 -4.483 -394.1 391.9 394.03 2 350.6 3.917 3.439 -3.454 -4.014 -353.2 353.7 354.5 3 356.9 3.564 3.383 -2.421 -3.453 -351.6 357.9 352.5 4 369.2 3.675 2.774 -4.173 -4.242 -365.4 370.8 366.3 39 Advances in Science and Technology Research Journal 2023, 17(3), 31–39 ous Method for Evaluation of the 6D Compliance of External Fixators, Biomechanics and Modeling in Mechanobiology, Springer-Verlag 2006; 6(256).
  • 9. Oh, J.K., Lee, J.J., Jung, D.K., Kim, B.J., Oh, C.W. Hybrid External Fixation of Distal Tibial Fractures: New Strategy to Place Pins and Wires without Penetrating The Anterior Compartment, Arch Orthop Trauma Surg., Springer-Verlag 2004; 124: 542–546.
  • 10. Watson, M.A., Mathias, K.J., Maffulli N. External Ring Fixators: an Overview, Proc Instn Mech Engrs 2000; 214(Part H): 459–470.
  • 11. Behrens F. General Theory and Principles of External Fixation. Clin Orthop 1989; 241: 15–23.
  • 12. Remiger, A.R. Mechanical Properties of the Pinless External Fixator on Human Tibiae, The British Journal of Accident Surgery Injury, 1992; 23(3): 28–43.
  • 13. Bosse, M.J., Holmes, C., Vossoughi, J., Alter, D. Comparison of the Howmedica and Synthes military external fixation frames. J Orthop Trauma. 1994; 8(2): 119–126.
  • 14. Dehankar R., Langde A.M. Finite element approach used on the human tibia: a study on spiral fractures. Journal of Long Term Effects of Medical Implants. 2009; 19(4): 313–321.
  • 15. Pervan, N., Muminović, A.J., Mešić, E., Delić, M., Muratović, E. Analysis of Mechanical Stability for External Fixation Device in the Case of Anterior-Po- sterior Bending. Advances in Science and Techno- logy Research Journal 2022; 16(3): 136–142.
  • 16. Đozić Š., Shetty A.A., Hansen U., James K.D. Biomechanical Test Results of the Sarafix – External Fixator, Imperial College, London 2004.
  • 17. Pervan N., Mesic E., Colic M. Stress analysis of external fixator based on stainless steel and compo- site material. International Journal of Mechanical Engineering & Technology 2017; 8(1): 189–199.
  • 18. Mešić, E., Pervan, N., Muminović, A.J., Muminović, A., Čolić M. Development of Knowledge-Based Engineering System for Structural Size Optimization of External Fixation Device. Applied Sciences 2021; 11(22): 10775.
  • 19. Mešić E., Muminović A., Čolić M., Petrović M., Pervan N. Development and Experimental Verification of a Generative CAD/FEM Model of an External Fixation Device. Tehnicki glasnik-Technical Journal 2020; 14(1): 1–6.
  • 20. Mesic E., Avdic V., Pervan, N. Numerical and experimental stress analysis of an external fixation system. Folia Medica Facultatis Medicinae Universitatis Saraeviensis 2015; 50(1): 52–58.
  • 21. Mesic E., Avdic V., Pervan N., Muminovic, A. A new Proposal on Analysis of the Interfragmentary Displacements in the Fracture Gap. TEM Journal 2015; 4(3): 270–275.
  • 22. Pervan N., Muminović A.J., Mešić E., Muratović E., Delić M. Analysis of the Mechanical Behaviour for the External Fixation Device under the Impact of Torque. Tehnicki glasnik-Technical Journal 2023; 17(1): 20–25
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2106e92-788c-44cf-a93a-cf6be049b178
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.