Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study investigates chemical modifications of coal fly ash (FA) treated with HCl or NH4 HCO3 or NaOH or Na2 edta, based on the research conducted to examine the behaviour of Cd(II) and Pb(II) ions adsorbed from water solution on treated fly ash. In laboratory tests, the equilibrium and kinetics were examined applying various temperatures (293 - 333 K) and pH (2 - 11) values. The maximum Cd(II) and Pb(II) ions adsorption capacity obtained at 293 K, pH 9 and mixing time 2 h from the Langmuir model can be grouped in the following order: FA-NaOH > FA-NH 4 HCO 3 > FA > NaOH2edta > FA-HCl. The morphology of fly ash grains was examined via small-angle X-ray scattering (SAXS) and images of scanning electron microscope (SEM). The adsorption kinetics data were well fitted by a pseudo-second-order rate model but showed a very poor fit for the pseudo- first order model. The intra-particle model also revealed that there are two separate stages in the sorption process, i.e. the external diffusion and the inter-particle diffusion. Thermodynamics parameters such as free energy, enthalpy and entropy were also determined. A laboratory test demonstrated that the modified coal fly ash worked well for the Cd(II) and Pb(II) ion uptake from polluted waters.
Czasopismo
Rocznik
Tom
Strony
215--234
Opis fizyczny
Bibliogr. 41 poz., tab., rys.
Twórcy
autor
- Rzeszów University of Technology, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, 6 Powstańców Warszawy Ave., PL- 959 Rzeszów, Poland
autor
- Rzeszów University of Technology, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, 6 Powstańców Warszawy Ave., PL- 959 Rzeszów, Poland
Bibliografia
- 1. Ahmaruzzaman M., 2010. A review on the utilization of fly ash. Prog. Energ. Combust., 36, 327-363. DOI: 10.1016/j.pecs.2009.11.003.
- 2. An C., Huang G., 2012. Stepwise adsorption of phenanthrene at the fly ash-water interface as affected by solution chemistry: Experimental and modeling studies. Environ. Sci. Technol., 46, 12742-12750. DOI: 10.1021/es3035158.
- 3. Bedoui K., Bekri Abbes I., Srasra E., 2008. Removal of cadmium(II) from aqueous solution using pure smectite and Lewatite S 100: The effect of time and metal concentration. Desalination, 223, 269-273. DOI: 10.1016/j.desal.2007.02.078.
- 4. Bowman R.S., 2003. Applications of surfactant-modified zeolites to environmental remediation. Micropor. Mesopor. Mat., 61, 43-56. DOI: 10.1016/S1387-1811(03)00354-8.
- 5. Brunauer S., Emmett P.H., Teller E., 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309-319. DOI: 10.1021/ja01269a023.
- 6. Canpolat F., Yilmaz K., Kose M.M., Sumer M., Yurdusev M.A., 2004. Use of zeolite, coal bottom ash and fly ash as replacement materials in cement production. Cement Concrete Res., 34, 731-735. DOI: 10.1016/S0008-8846(03)00063-2.
- 7. Chien S. H., Clayton W. R., 1980. Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci. Soc. Am. J., 44, 265-268. DOI: 10.2136/sssaj1980.03615995004400020013x.
- 8. Chitrakar R., Tezuka S., Sonoda A., Sakane K., Ooi K., Hirotsu T., 2005. Adsorption of phosphate from seawater on calcined MgMn-layered double hydroxides. J Colloid Interf. Sci., 290, 45-51. DOI: 10.1016/j.jcis.2005.04.025.
- 9. Cho H., Oh D., Kim K., 2005. A study on removal characteristics of heavy metals from aqueous solution by fly ash. J. Hazard. Mater., 127, 187-195. DOI: 10.1016/j.jhazmat.2005.07.019.
- 10. Debnath S., Ghosh U.C., 2009. Nanostructured hydrous titanium(IV) oxide: synthesis characterization and Ni(II) adsorption behavior. Chem. Eng. J., 152, 480-491. DOI: 10.1016/j.cej.2009.05.021.
- 11. Derkowski A., Franus W., Beran E., Czímerová A., 2006. Properties and potential applications of zeolitic materials produced from fly ash using simple method of synthesis. Powder Technol., 166, 47-54. DOI: 10.1016/j.powtec.2006.05.004.
- 12. Derkowski A., Franus W., Waniak-Nowicka H., Czímerová A., 2007. Textural properties vs. CEC and EGME retention of Na-X zeolite prepared from fly ash at room temperature. Int. J. Miner. Process., 82, 57-68. DOI: 10.1016/j.minpro.2006.10.001.
- 13. Farooq U., Kozinski J.A., Khan M.A., Athar M., 2010. Biosorption of heavy metal ions using wheat based biosorbents - A review of the recent literature. Bioresource Technol., 101, 5043-5053. DOI: 10.1016/j.biortech.2010.02.030.
- 14. Ferreiraa T.R., Lopesb C.B., Litoa P.F., Oterob M., Lina Z., Rochaa J., Pereirab E., Silvaa C.M., Duarteb A., 2009. Cadmium(II) removal from aqueous solution using microporous titanosilicate ETS-4. Chem. Eng. J., 147, 173-179. DOI: 10.1016/j.cej.2008.06.032.
- 15. Freundlich H.M.F., 1906. Über die adsorption in lösungen. J. Phys. Chem. 57, 385-470.
- 16. Ho Y. S., McKay G., 1998. Sorption of dye from aqueous solution by peat. Chem. Eng. J., 70, 115-124. DOI: 10.1016/S0923-0467(98)00076-1.
- 17. Hsu T.-C., Yu C.-C., Yeh C.-M., 2008. Adsorption of Cu2+ from water using raw and modified coal fly ashes. Fuel, 87, 1355-1359. DOI: 10.1016/j.fuel.2007.05.055.
- 18. Jiang M., Jin X., Lu X., Chen Z., 2010. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination, 252, 33-39. DOI: 10.1016/j.desal.2009.11.005. Jiao F., Wijaya N., Zhang L., Ninomiya Y., Hocking R., 2011. Synchrotron-Based XANES Speciation of Chromium in the Oxy-Fuel Fly Ash Collected from Lab-Scale Drop-Tube Furnace. Environ. Sci. Technol., 45, 6640-6646. DOI: 10.1021/es200545e.
- 19. Kantiranis N., Filippidis A., Mouhtaris T., Paraskevopoulos K.M., Zorba T., Squires C. Charistos D., 2006. EPI-type zeolite synthesis from Greek sulphocalcic fly ashes promoted by H2O2 solutions. Fuel, 85, 360-366. DOI: 10.1016/j.fuel.2005.07.015.
- 20. Kıpçak İ, Isıyel T. G., 2015. Magnesite tailing as low-cost adsorbent for the removal of copper(II) ions from aqueous solution. Korean J. Chem. Eng., 32(8), 1634-1641. DOI: 10.1007/s11814-014-0377-8.
- 21. Lagergren S., 1898. Zur theorie der sogenannten adsorption gel’ster stoffe. Kungliga Svenska Vetenskapsakademines, Handlingar. 24(4), 1-39.
- 22. Langmuir I., 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361-1403. DOI: 10.1021/ja02242a004
- 23. Li H-Q., Huang G-H., An Ch-J., Zhang W-X., 2012. Kinetic and equilibrium studies on the adsorption of calcium lignosulfonate from aqueous solution by coal fly ash. Chem. Eng. J., 200-202, 275-282. DOI: 10.1016/j.cej.2012.06.051.
- 24. Maliyekkal S.M., Anshup, Antony K.R., Pradeep T., 2010. High yield combustion synthesis of nanomagnesia and its application for fluoride removal. Sci. Tot. Environ., 408, 2273-2282. DOI: 10.1016/j.scitotenv.2010.01.062.
- 25. Mathialagan T., Viraraghavan T., 2002. Adsorption of Cd from aqueous solutions by perlite. J. Hazard. Mater., 94, 291-303. DOI: 10.1016/S0304-3894(02)00084-5.
- 26. Moutsatsou A., Stamatakis E., Hatzizotzia K., Protonotarios V., 2006. The utilization of Ca-rich and Ca-Si-rich fly ashes in zeolites production. Fuel, 85, 657-63. DOI: 10.1016/j.fuel.2005.09.008.
- 27. Nascimento M., Moreira Soares P.S., de Souza V.P., 2009. Adsorption of heavy metal cations using coal fly ash modified by hydrothermal method. Fuel, 88, 1714-1719. DOI: 10.1016/j.fuel.2009.01.007.
- 28. Papandreou A.D., Stournaras C.J., Panias D., Paspaliaris I., 2011. Adsorption of Pb(II), Zn(II) and Cr(III) on coal fly ash porous pellets. Miner. Eng., 24, 1495-1501. DOI: 10.1016/j.mineng.2011.07.016.
- 29. Penilla P.R., Bustos A.G., Elizalde S.G., 2006. Immobilization of Cs, Cd, Pb and Cr by synthetic zeolites from Spanish low-calcium coal fly ash. Fuel, 85, 823-32. DOI: 10.1016/j.fuel.2005.08.022.
- 30. Rangel-Porras G., Garcia-Magno J.B., Gonzalez-Munoz M.P., 2010. Lead and cadmium immobilization on calcitic limestone materials. Desalination, 262, 1-10. DOI: 10.1016/j.desal.2010.04.043.
- 31. Reddya D.H.K., Seshaiaha K., Reddy A.V.R., Madhava Rao M., Wang M.C., 2010. Biosorption of Pb2+ from aqueous solutions by Moringa oleifera bark: equilibrium and kinetic studies. J. Hazard. Mater., 174, 831-838. DOI: 10.1016/j.jhazmat.2009.09.128.
- 32. Ruhl L., Vengosh A., Dwyer G.S., Hsu-Kim H., Deonarine A., 2010. Environmental Impacts of the Coal Ash Spill in Kingston, Tennessee: An 18-Month Survey. Environ. Sci. Technol., 44, 9272-9278. DOI: 10.1021/es1026739. Scott M. A., Kathleen A.C., Prabir K.D., 2003. Handbook of zeolite science and technology, (Eds.), CRC Press, 16., USA, ISBN: 0824740203.
- 33. Seredin V.V., Finkelman R.B., 2008. Metalliferous coals: A review of the main genetic and geochemical types. Int. J. Coal Geol., 76, 253-289. DOI: 10.1016/j.coal.2008.07.016.
- 34. Sočo E., Kalembkiewicz J., 2007. Investigations of sequential leaching behaviour of Cu and Zn from coal fly ash and their mobility in environmental conditions. J. Hazard. Mater., 145, 482-487. DOI: 10.1016/j.jhazmat.2006.11.046.
- 35. Sočo E., Kalembkiewicz J., 2009. Investigations on Cr mobility from coal fly ash. Fuel, 88, 1513-1519. DOI: 10.1016/j.fuel.2009.02.021.
- 36. Kielland J., 1937. Individual activity coefficients of ions in aqueous solutions, J. Am. Chem. Soc., 59, 1675-1678.
- 37. Sočo E., Kalembkiewicz J., 2013. Adsorption of nickel(II) and copper(II) ions from aqueous solution by coal fly ash. J. Environ. Chem. Eng., 1, 581-588. DOI: 10.1016/j.jece.2013.06.029.
- 38. Visa M., Isac L., Duta A., 2012. Fly ash adsorbents for multi-cation wastewater treatment. Appl. Surf. Sci., 258, 6345-6352. DOI: 10.1016/j.apsusc.2012.03.035.
- 39. Weber T. W., Chakravorti, 1974. Pore and solid diffusion models for fixed-bed adsorbers. AIChE J., 20, 228-238. DOI: 10.1002/aic.690200204.
- 40. Weber W. J. Jr., Morris J. C., 1963. Kinetics of adsorption on carbon from solution. J. Sanitary Eng. Div., 89, 31-60.
- 41. Zhenga L., Danga Z., Yi X., Zhanga H., 2010. Equilibrium and kinetic studies of adsorption of Cd(II) from aqueous solution using modified corn stalk. J. Hazard. Mater., 176, 650-656. DOI: 10.1016/j.jhazmat.2009.11.081.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a20c09ed-3318-48f0-a1ed-e9fcd6444928