PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On an improvement of Carnot-like cycles devoted to turbines with isothermal expansion

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a novel, procedure of calculations of simple thermodynamic cycles with the main isothermal expansion process. Calculation assumptions are based on the use of technologically advanced flow devices. Firstly the theoretical Ericsson cycle with description of isothermal process has been presented. Then the calculations for open gas cycle with external combustion chamber, realising Ericsson cycle with upper temperature of 1473 K were carried out, showing the possibilities of turbines with isothermal expansion and achieving record-breaking efficiency. The use of isothermal compression has also been considered. The second, supercritical cycle with organic medium and condensation process also shows predispositions to achieve record-high efficiency at upper cycle temperature of 573 K. For both cycles, graphs of linearized thermodynamic transformations were made as well as graphs of efficiency dependence on the pressure. At the end, unit work of turbines in cycles has been compared and discussed.
Rocznik
Tom
Strony
3--21
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Energy Conversion Department, Institute of Fluid Flow Machinery Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • [1] Szewalski R.: Current problems in the development of energy technology. PAS, Warszawa 1978.
  • [2] Ziółkowski P., Kowalczyk T., Hernet. J, Kornet S.: The thermodynamic analysis of the Szewalski hierarchic vapour cycle cooperating with a system of waste heat recovery. Trans. Inst. Fluid-Flow Mach. 129(2015), 51–75.
  • [3] Ziółkowski P., Kowalczyk T., Kornet S., Badur J.: On low-grade waste heat utilization from a supercritical steam powerplant using an ORC-bottoming cycle coupled with two sources of heat. Energ. Convers. Manage. 146(2017), 158–173.
  • [4] Kowalczyk T., Ziółkowski P, Badur J.: Exergy losses in the Szewalski binary vapor cycle. Entropy 17(2015), 7242–7265.
  • [5] Mikielewicz J. Utilisation of bleed steam from power plant to increase saturation temperature in organic Rankine cycle. Trans. Inst. Fluid-Flow Mach. 126(2014) 21–32.
  • [6] Klonowicz P., Borsukiewicz-Gozdur A., Hanausek P., Kryłłowicz W., Brüggemann D.: Design and performance measurements of an organic vapour turbine. Appl. Thermal Energ. 63(2014), 297–303.
  • [7] Rusanov R., J¸edrzejewski Ł., Klonowicz P., Żywica G., Lampart P., Rusanov A.: Design and performance study of a smal l-scale waste heat recovery turbine. Trans. Inst. Fluid-Flow Mach. 133(2016), 145–162.
  • [8] Feidt M., Blaise M.: A new three objectives criterion to optimize thermomechanical engines model. In: Proc. 1st Int. e-Conf. on Energies, 2014.
  • [9] Igobo I.N., Davies P.A.: Review of low-temperature vapour power cycle engineswith quasiisothermal expansion. Energy 70(2014), 22–34.
  • [10] Kosowski K., Łuniewicz B., Obrzut B.: Ericsson Cycle. In: Steam and Gas Turbines, 2nd Edn., (K. Kosowski, Ed.). ALSTOM Power LLC, Elbląg 2007.
  • [11] Konorski A.: Steam drying in condensing turbines by internal heating using own steam. Trans. Inst. Fluid-Flow Mach. 11-12(1962), 63–120.
  • [12] Schaffel N., Szlek A.: Thermodynamical analysis of isothermal gas turbine cycles. Arch. Energ. 37(2007), 1-2, 171–180.
  • [13] Kosowski K., Cieślński A., Piwowarski M., Stępień R., Włodarski W.: CHP cycles with reciprocating engines and microturbines. In: Proc. 12th RDPE Conf., Warsaw 2015.
  • [14] Goliński J.A., Jesionek K.J.: Air and Steam Power Plants. Maszyny Przepływowe: Vol. 31, Wyd. IMP PAN, Gdańsk 2009 (in Polish).
  • [15] Pudlik W.: Thermodynamics, (3rd Edn.). Gdańsk University of Technology. Gdańsk 2011 (in Polish).
  • [16] Jin Young Heo, Min Seok Kim, Seungjoon Baik, Seong Jun Bae, Jeong Ik Lee: Thermodynamic study of supercritical CO2 Brayton cycle using an isothermal compressor. Appl. Energy 206(2017), 1118–1130.
  • [17] Harada H.: High temperature materials for gas turbines: The present and future. Proc. Int. Gas Turbine Cong. 2003 Tokyo, November 2–7, 2003.
  • [18] Siebert M.: Breakthrough with 3D printed gas turbine blades. Siemens, https://www.siemens.com (access 20 Dec. 2017).
  • [19] Bauer E.: Physics of high-temperature air. Part 1, Basics. Inst. Def. Anal. USA, 1990.
  • [20] Capitelli M., Colonna G., Gorse C., D’Angola A.: Transport properties of high temperature air in local thermodynamic equilibrium. Eur. Phys. J. 11(2000), 279–289.
  • [21] Perycz S.: Steam and Gas Turbines. Ossolineum, Wrocław 1992 (in Polish).
  • [22] Kraszewski B.: Thermodynamic analysis of high efficiency turbine cycles with organic media. Eng. thesis, Gdańsk University of Technology, Gdańsk 2015 (in Polish).
  • [23] Piwowarski M.: Selection of the Working Medium and Favorable Values of Basic Microturbine Design Parameters for Energy Conversion from Low Temperature Sources. Wyd. IMP PAN, Gdańsk 2013 (in Polish).
  • [24] Preissinger M., Brüggemann D.: Thermal stability of hexamethyldisiloxane (MM) for hightemperature organic Rankine cycles (ORC). Energies 9(2016), 3, 183–194.
  • [25] http://www.coolprop.org
  • [26] https://www.mathworks.com/products/matlab.html
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a20632df-9092-4fb8-a438-feffc939cd1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.