PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and experiment of low-pressure gas supply system for dual fuel engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A low-pressure gas supply system for dual fuel engines was designed to transport liquid natural gas from a storage tank to a dual fuel engine and gasify it during transportation. The heat exchange area and pressure drop in the spiral- wound heat exchanger, the volume of the buffer tank and the pressure drop in the pipeline of the gas supply system were calculated by programming using Python. Experiments were carried out during the proces of starting and running the dual fuel engine using this gas supply system. Experimental data show that the gas supply system can supply gas stably during the process and ensure the stable operation of the dual fuel engine. The effects of the parameters of natural gas and ethylene glycol solution on the heat exchange area of the spiralwound heat exchanger and the volume of the buffer tank in the gas supply system were studied. The results show that the heat exchange area calculated according to pure methane can adapt to the case of non-pure methane. The temperature difference between natural gas and ethylene glycol solution should be increased in order to reduce the heat exchange area. The heat exchange area selected according to the high pressure of natural gas can adapt to the low pressure of natural gas. The volume of the buffer tank should be selected according to the situation of the minimum methane content to adapt to the situation of high methane content. The main influencing factor in selecting the volume of the buffer tank is the natural gas flow. The results can provide guidance for the design of the gas supply system for dual fuel engines.
Rocznik
Tom
Strony
76--84
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Shanghai Maritime University, 1550 Haigang Avenue, 201306 Shanghai, China
autor
  • Shanghai Maritime University, 1550 Haigang Avenue, 201306 Shanghai, China
autor
  • Shanghai Marine Equipment Research Institute, 10 Hengshan Road , 200031 Shanghai, China
  • Shanghai Marine Equipment Research Institute, 10 Hengshan Road , 200031 Shanghai,, China
Bibliografia
  • 1. Yang Z. Y., Tan Q. M., Geng P. (2019): Combustion and emissions investigation on low-speed two-stroke marine diesel engine with low sulfur diesel fuel. Polish Maritime Research, 26, 153–161.
  • 2. Wang Z. S., Lv J. G., Tan Y. F., Guo M., Gu Y. Y., Xu S., Zhou Y. H. (2019): Temporospatial variations and Spearman correlation analysis of ozone concentrations to nitrogen dioxide, sulfur dioxide, particulate matters and carbon monoxide in ambient air, China. Atmospheric Pollution Research, 10, 1203–1210.
  • 3. Ray S., Kim K.-H. (2014): The pollution status of sulfur dioxide in major urban areas of Korea between 1989 and 2010. Atmospheric Research, 147-148, 101–110.
  • 4. Lee S. B., Bae G. N., Lee Y. M., Moon K. C., Choi M. S. (2010): Correlation between light intensity and ozone formation for photochemical smog in urban air of Seoul. Aerosol and Air Quality Research, 10(6), 540–549.
  • 5. Merien-Paul R. H., Enshaei H., Jayasinghe S. G. (2019): Effects of fuel-specific energy and operational demands on cost/emission estimates: A case study on heavy fuel-oil vs liquefied natural gas. Transportation Research Part D: Transport and Environment, 69, 77–89.
  • 6. Yang Z. L., Zhang D., Caglayan O., Jenkinson I. D., Bonsall S., Wang J., Huang M., Yan X. P. (2012): Selection of techniques for reducing shipping NOx and SOx emissions. Transportation Research Part D: Transport and Environment, 17(6), 478–486.
  • 7. Thomson H., Corbett J. J., Winebrake J. J. (2015): Natural gas as a marine fuel. Energy Policy, 87, 153–167.
  • 8. Stoumpos S., Theotokatos G., Boulougouris E., Vassalos D., Lazakis I., Livanos G. (2019): Marine dual fuel engine modelling and parametric investigation of engine settings effect on performance-emissions trade-offs. Ocean Engineering, 157, 376–386.
  • 9. Park H. J., Park, Lee S., Jeong J. Y., Chang D. J. (2018): Design of the compressor- assisted LNG fuel gas supply system. Energy, 158, 1017–1027.
  • 10. Chien N. B., Jong-Taek O., Asano H., Tomiyama Y. (2019): Investigation of experiment and simulation of a plate heat exchanger. Energy Procedia, 158, 5635–5640.
  • 11. Feng H. J., Chen L., Wu Z. X., Xie Z. J. (2019): Constructal design of a shell-and-tube heat exchanger for organic fluid evaporation process. International Journal of Heat and Mass Transfer, 131, 750–756.
  • 12. Fang L., Diao N. R., Fang Z. H., Zhu K., Zhang W. K. (2017): Study on the efficiency of single and double U-tube heat exchangers. Procedia Engineering, 205, 4045–4051.
  • 13. Fernández I. A. Gómez M. R., Gómez J. R., Insua A. B. (2017): Review of propulsion systems on LNG carriers. Renewable and Sustainable Energy Reviews, 67, 1395–1411.
  • 14. Seo S. W., Jang W. H., Kim J. N. Y., Ryu J. H., Chang D. J. (2017): Experimental study on heating type pressurization of liquid applicable to LNG fueled shipping. Applied Thermal Engineering, 127, 837–845.
  • 15. Wang W., Zhang Y. N., Lee K. S., Li B. X. (2019): Optimal design of a double pipe heat exchanger based on the outward helically corrugated tube. International Journal of Heat and Mass Transfer, 135, 706–716.
  • 16. Wang G. H., Wang D. B., Peng X., Han L. L., Xiang S., Ma F. (2019): Experimental and numerical study on heat transfer and flow characteristics in the shell side of helically coiled trilobal tube heat exchanger. Applied Thermal Engineering, 149, 772–787.
  • 17. Gupta P. K., Kush P. K., Tiwari A. (2007): Design and optimization of coil finned-tube heat exchangers for cryogenic applications. Cryogenics, 47, 322–332.
  • 18. Saydam V., Parsazadeh M., Radeef M., Duan X.-L. (2019): Design and experimental analysis of a helical coil phase change heat exchanger for thermal energy storage. Journal of Energy Storage, 21, 9–17.
  • 19. Abolmaali A. M., Afshin H. (2019): Development of Nusselt number and friction factor correlations for the shell side of spiral-wound heat exchangers. International Journal of Thermal Sciences, 139, 105–117.
  • 20. Neeraas B. O., Fredheim A. O., Aunan B. (2017): Experimental data and model for heat transfer, in liquid falling film flow on shell-side, for spiral-wound LNG heat exchanger. International Journal of Heat and Mass Transfer, 47, 3565–3572.
  • 21. Shah M. M. (1982): Chart correlation for saturated boiling heat transfer: equations and further study. ASHRAE Transactions, 88, 185–196.
  • 22. Patil R. K., Shende B. W., Ghosh P. K. (1982): Designing a helical-coil heat exchanger. Chemical Engineering, 92, 85–88.
  • 23. Wang Q. W., Zeng M., Ma T., Du X. P., Yang J. F. (2014): Recent development and application of several high-efficiency surface heat exchangers for energy conversion and utilization. Applied Energy, 135, 748–777.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a202e283-9cbc-4c34-8b73-e4ec965486d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.